Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import sys | |
import time | |
import requests | |
from subprocess import Popen, PIPE | |
import threading | |
# from huggingface_hub import hf_hub_download | |
import gradio as gr | |
def run_xvaserver(): | |
try: | |
# start the process without waiting for a response | |
print('Running xVAServer subprocess...\n') | |
xvaserver = Popen(['python', 'server.py'], stdout=PIPE, stderr=PIPE, universal_newlines=True) | |
except: | |
print('Could not run xVASynth.') | |
sys.exit(0) | |
# Wait for a moment to ensure the server starts up | |
time.sleep(10) | |
# load default voice model | |
load_model() | |
# predicted = predict('test', 1.0) | |
# print(predicted) | |
# Check if the server is running | |
if xvaserver.poll() is not None: | |
print("Web server failed to start.") | |
sys.exit(0) | |
# contact local xVASynth server; ~2 second timeout | |
print('Attempting to connect to xVASynth...') | |
try: | |
response = requests.get('http://0.0.0.0:8008') | |
response.raise_for_status() # If the response contains an HTTP error status code, raise an exception | |
except requests.exceptions.RequestException as err: | |
print('Failed to connect!') | |
return | |
print('xVAServer running on port 8008') | |
# Read and print stdout and stderr of the subprocess | |
while True: | |
output = xvaserver.stdout.readline() | |
if output == '' and xvaserver.poll() is not None: | |
break | |
if output: | |
print(output.strip()) | |
error = xvaserver.stderr.readline() | |
if error == '' and xvaserver.poll() is not None: | |
break | |
if error: | |
print(error.strip(), file=sys.stderr) | |
# Wait for the process to exit | |
xvaserver.wait() | |
def load_model(): | |
model_name = "Pendrokar/TorchMoji" | |
# model_path = hf_hub_download(repo_id=model_name, filename="ccby_nvidia_hifi_6670_M.pt") | |
# model_json_path = hf_hub_download(repo_id=model_name, filename="ccby_nvidia_hifi_6670_M.json") | |
model_path = '/tmp/hfcache/models--Pendrokar--xvapitch_nvidia_6670/snapshots/2e138a7c459fb1cb1182dd7bc66813f5325d30fd/ccby_nvidia_hifi_6670_M.pt' | |
model_json_path = '/tmp/hfcache/models--Pendrokar--xvapitch_nvidia_6670/snapshots/2e138a7c459fb1cb1182dd7bc66813f5325d30fd/ccby_nvidia_hifi_6670_M.json' | |
try: | |
os.symlink(model_path, os.path.join('./models/ccby/', os.path.basename(model_path))) | |
os.symlink(model_json_path, os.path.join('./models/ccby/', os.path.basename(model_json_path))) | |
except: | |
print('Failed creating symlinks, they probably already exist') | |
model_type = 'xVAPitch' | |
language = 'en' | |
data = { | |
'outputs': None, | |
'version': '3.0', | |
'model': model_path.replace('.pt', ''), | |
'modelType': model_type, | |
'base_lang': language, | |
'pluginsContext': '{}', | |
} | |
try: | |
response = requests.post('http://0.0.0.0:8008/loadModel', json=data) | |
response.raise_for_status() # If the response contains an HTTP error status code, raise an exception | |
except requests.exceptions.RequestException as err: | |
print('Failed to load voice model!') | |
return | |
def predict(input, pacing): | |
model_type = 'xVAPitch' | |
line = 'Test' | |
pace = pacing if pacing else 1.0 | |
save_path = 'test.wav' | |
language = 'en' | |
base_speaker_emb = [] | |
use_sr = 0 | |
use_cleanup = 0 | |
data = { | |
'pluginsContext': '{}', | |
'modelType': model_type, | |
'sequence': line, | |
'pace': pace, | |
'outfile': save_path, | |
'vocoder': 'n/a', | |
'base_lang': language, | |
'base_emb': base_speaker_emb, | |
'useSR': use_sr, | |
'useCleanup': use_cleanup, | |
} | |
try: | |
response = requests.post('http://0.0.0.0:8008/synthesize', json=data) | |
response.raise_for_status() # If the response contains an HTTP error status code, raise an exception | |
except requests.exceptions.RequestException as err: | |
print('Failed to synthesize!') | |
print('server.log contents:') | |
with open('server.log', 'r') as f: | |
print(f.read()) | |
return 22100, os.open(save_path, "rb") | |
input_textbox = gr.Textbox( | |
label="Input Text", | |
lines=1, | |
autofocus=True | |
) | |
slider = gr.Slider(0.0, 2.0, value=1.0, step=0.1, label="Pacing") | |
gradio_app = gr.Interface( | |
predict, | |
[ | |
input_textbox, | |
slider | |
], | |
outputs= "audio", | |
title="xVASynth (WIP)", | |
) | |
if __name__ == "__main__": | |
# Run the web server in a separate thread | |
web_server_thread = threading.Thread(target=run_xvaserver) | |
print('Starting xVAServer thread') | |
web_server_thread.start() | |
print('running Gradio interface') | |
gradio_app.launch() | |
# Wait for the web server thread to finish (shouldn't be reached in normal execution) | |
web_server_thread.join() | |