import os import gradio as gr os.system("pip install -U gradio") os.system("pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html") os.system("git clone https://github.com/facebookresearch/Detic.git --recurse-submodules") # Importing necessary libraries import numpy as np import cv2 from PIL import Image from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg # Configuring model and predictor cfg = get_cfg() cfg.merge_from_file("Detic/configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml") cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth" cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 predictor = DefaultPredictor(cfg) # Caption generator from langchain.llms import OpenAIChat session_token = os.environ.get("SessionToken") def generate_caption(object_list_str, api_key, temperature): query = f"You are an intelligent image captioner. I will hand you the objects and their position, and you should give me a detailed description for the photo. In this photo we have the following objects\n{object_list_str}" llm = OpenAIChat( model_name="gpt-3.5-turbo", openai_api_key=api_key, temperature=temperature ) try: caption = llm(query) caption = caption.strip() except: caption = "Sorry, something went wrong!" return caption # Model Inference def caption_image(img): im = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) outputs = predictor(im)["instances"] metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0]) v = Visualizer(im[:, :, ::-1], metadata=metadata) out = v.draw_instance_predictions(outputs.to("cpu")) detected_objects = [] object_list_str = [] for i, prediction in enumerate(outputs): x0, y0, x1, y1 = prediction.pred_boxes.tensor[0].cpu().numpy() width = x1 - x0 height = y1 - y0 predicted_label = metadata.thing_classes[prediction.pred_classes[0]] detected_objects.append({ "prediction": predicted_label, "x": int(x0), "y": int(y0), "w": int(width), "h": int(height) }) object_list_str.append(f"{predicted_label} - X:({int(x0)} Y: {int(y0)} Width {int(width)} Height: {int(height)})") # GPT3 to generate caption api_key = session_token if api_key is not None: gpt_response = generate_caption(object_list_str, api_key, temperature=0.7) else: gpt_response = "Please paste your OpenAI key to use" return gpt_response # Interface image_input = gr.inputs.Image(shape=(896, 896)) caption_output = gr.outputs.Textbox() gr.Interface(fn=caption_image, inputs=image_input, outputs=caption_output, title="Intelligent Image Captioning", description="Generate captions for an image with object detection.").launch()