Spaces:
Build error
Build error
update
Browse files- text_to_animation/model_flax.py +191 -0
text_to_animation/model_flax.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from enum import Enum
|
3 |
+
import gc
|
4 |
+
import numpy as np
|
5 |
+
import jax.numpy as jnp
|
6 |
+
import jax
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
from typing import List
|
10 |
+
|
11 |
+
from flax.training.common_utils import shard
|
12 |
+
from flax.jax_utils import replicate
|
13 |
+
from flax import jax_utils
|
14 |
+
import einops
|
15 |
+
|
16 |
+
from transformers import CLIPTokenizer, CLIPFeatureExtractor, FlaxCLIPTextModel
|
17 |
+
from diffusers import (
|
18 |
+
FlaxDDIMScheduler,
|
19 |
+
FlaxAutoencoderKL,
|
20 |
+
FlaxUNet2DConditionModel as VanillaFlaxUNet2DConditionModel,
|
21 |
+
)
|
22 |
+
from text_to_animation.models.unet_2d_condition_flax import FlaxUNet2DConditionModel
|
23 |
+
from diffusers import FlaxControlNetModel
|
24 |
+
|
25 |
+
from text_to_animation.pipelines.text_to_video_pipeline_flax import (
|
26 |
+
FlaxTextToVideoPipeline,
|
27 |
+
)
|
28 |
+
|
29 |
+
import utils.utils as utils
|
30 |
+
import utils.gradio_utils as gradio_utils
|
31 |
+
import os
|
32 |
+
|
33 |
+
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
|
34 |
+
|
35 |
+
unshard = lambda x: einops.rearrange(x, "d b ... -> (d b) ...")
|
36 |
+
|
37 |
+
|
38 |
+
class ModelType(Enum):
|
39 |
+
Text2Video = 1
|
40 |
+
ControlNetPose = 2
|
41 |
+
StableDiffusion = 3
|
42 |
+
|
43 |
+
|
44 |
+
def replicate_devices(array):
|
45 |
+
return jnp.expand_dims(array, 0).repeat(jax.device_count(), 0)
|
46 |
+
|
47 |
+
|
48 |
+
class ControlAnimationModel:
|
49 |
+
def __init__(self, dtype, **kwargs):
|
50 |
+
self.dtype = dtype
|
51 |
+
self.rng = jax.random.PRNGKey(0)
|
52 |
+
self.pipe = None
|
53 |
+
self.model_type = None
|
54 |
+
|
55 |
+
self.states = {}
|
56 |
+
self.model_name = ""
|
57 |
+
|
58 |
+
def set_model(
|
59 |
+
self,
|
60 |
+
model_id: str,
|
61 |
+
**kwargs,
|
62 |
+
):
|
63 |
+
if hasattr(self, "pipe") and self.pipe is not None:
|
64 |
+
del self.pipe
|
65 |
+
self.pipe = None
|
66 |
+
gc.collect()
|
67 |
+
|
68 |
+
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
|
69 |
+
"fusing/stable-diffusion-v1-5-controlnet-openpose",
|
70 |
+
from_pt=True,
|
71 |
+
dtype=jnp.float16,
|
72 |
+
)
|
73 |
+
|
74 |
+
scheduler, scheduler_state = FlaxDDIMScheduler.from_pretrained(
|
75 |
+
model_id, subfolder="scheduler", from_pt=True
|
76 |
+
)
|
77 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
78 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
79 |
+
model_id, subfolder="feature_extractor"
|
80 |
+
)
|
81 |
+
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
|
82 |
+
model_id, subfolder="unet", from_pt=True, dtype=self.dtype
|
83 |
+
)
|
84 |
+
unet_vanilla = VanillaFlaxUNet2DConditionModel.from_config(
|
85 |
+
model_id, subfolder="unet", from_pt=True, dtype=self.dtype
|
86 |
+
)
|
87 |
+
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
|
88 |
+
model_id, subfolder="vae", from_pt=True, dtype=self.dtype
|
89 |
+
)
|
90 |
+
text_encoder = FlaxCLIPTextModel.from_pretrained(
|
91 |
+
model_id, subfolder="text_encoder", from_pt=True, dtype=self.dtype
|
92 |
+
)
|
93 |
+
self.pipe = FlaxTextToVideoPipeline(
|
94 |
+
vae=vae,
|
95 |
+
text_encoder=text_encoder,
|
96 |
+
tokenizer=tokenizer,
|
97 |
+
unet=unet,
|
98 |
+
unet_vanilla=unet_vanilla,
|
99 |
+
controlnet=controlnet,
|
100 |
+
scheduler=scheduler,
|
101 |
+
safety_checker=None,
|
102 |
+
feature_extractor=feature_extractor,
|
103 |
+
)
|
104 |
+
self.params = {
|
105 |
+
"unet": unet_params,
|
106 |
+
"vae": vae_params,
|
107 |
+
"scheduler": scheduler_state,
|
108 |
+
"controlnet": controlnet_params,
|
109 |
+
"text_encoder": text_encoder.params,
|
110 |
+
}
|
111 |
+
self.p_params = jax_utils.replicate(self.params)
|
112 |
+
self.model_name = model_id
|
113 |
+
|
114 |
+
def generate_initial_frames(
|
115 |
+
self,
|
116 |
+
prompt: str,
|
117 |
+
video_path: str,
|
118 |
+
n_prompt: str = "",
|
119 |
+
num_imgs: int = 4,
|
120 |
+
resolution: int = 512,
|
121 |
+
model_id: str = "runwayml/stable-diffusion-v1-5",
|
122 |
+
) -> List[Image.Image]:
|
123 |
+
self.set_model(model_id=model_id)
|
124 |
+
|
125 |
+
video_path = gradio_utils.motion_to_video_path(video_path)
|
126 |
+
|
127 |
+
added_prompt = "high quality, best quality, HD, clay stop-motion, claymation, HQ, masterpiece, art, smooth"
|
128 |
+
prompts = added_prompt + ", " + prompt
|
129 |
+
|
130 |
+
added_n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly"
|
131 |
+
negative_prompts = added_n_prompt + ", " + n_prompt
|
132 |
+
|
133 |
+
video, fps = utils.prepare_video(
|
134 |
+
video_path, resolution, None, self.dtype, False, output_fps=4
|
135 |
+
)
|
136 |
+
control = utils.pre_process_pose(video, apply_pose_detect=False)
|
137 |
+
|
138 |
+
seeds = [seed for seed in jax.random.randint(self.rng, [num_imgs], 0, 65536)]
|
139 |
+
prngs = [jax.random.PRNGKey(seed) for seed in seeds]
|
140 |
+
print(seeds)
|
141 |
+
images = self.pipe.generate_starting_frames(
|
142 |
+
params=self.p_params,
|
143 |
+
prngs=prngs,
|
144 |
+
controlnet_image=control,
|
145 |
+
prompt=prompts,
|
146 |
+
neg_prompt=negative_prompts,
|
147 |
+
)
|
148 |
+
|
149 |
+
images = [np.array(images[i]) for i in range(images.shape[0])]
|
150 |
+
|
151 |
+
return images
|
152 |
+
|
153 |
+
def generate_video_from_frame(self, controlnet_video, prompt, seed, neg_prompt=""):
|
154 |
+
# generate a video using the seed provided
|
155 |
+
prng_seed = jax.random.PRNGKey(seed)
|
156 |
+
len_vid = controlnet_video.shape[0]
|
157 |
+
# print(f"Generating video from prompt {'<aardman> style '+ prompt}, with {controlnet_video.shape[0]} frames and prng seed {seed}")
|
158 |
+
added_prompt = "high quality, best quality, HD, clay stop-motion, claymation, HQ, masterpiece, art, smooth"
|
159 |
+
prompts = added_prompt + ", " + prompt
|
160 |
+
|
161 |
+
added_n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly"
|
162 |
+
negative_prompts = added_n_prompt + ", " + neg_prompt
|
163 |
+
|
164 |
+
# prompt_ids = self.pipe.prepare_text_inputs(["aardman style "+ prompt]*len_vid)
|
165 |
+
# n_prompt_ids = self.pipe.prepare_text_inputs([neg_prompt]*len_vid)
|
166 |
+
|
167 |
+
prompt_ids = self.pipe.prepare_text_inputs([prompts] * len_vid)
|
168 |
+
n_prompt_ids = self.pipe.prepare_text_inputs([negative_prompts] * len_vid)
|
169 |
+
prng = replicate_devices(
|
170 |
+
prng_seed
|
171 |
+
) # jax.random.split(prng, jax.device_count())
|
172 |
+
image = replicate_devices(controlnet_video)
|
173 |
+
prompt_ids = replicate_devices(prompt_ids)
|
174 |
+
n_prompt_ids = replicate_devices(n_prompt_ids)
|
175 |
+
motion_field_strength_x = replicate_devices(jnp.array(3))
|
176 |
+
motion_field_strength_y = replicate_devices(jnp.array(4))
|
177 |
+
smooth_bg_strength = replicate_devices(jnp.array(0.8))
|
178 |
+
vid = (
|
179 |
+
self.pipe(
|
180 |
+
image=image,
|
181 |
+
prompt_ids=prompt_ids,
|
182 |
+
neg_prompt_ids=n_prompt_ids,
|
183 |
+
params=self.p_params,
|
184 |
+
prng_seed=prng,
|
185 |
+
jit=True,
|
186 |
+
smooth_bg_strength=smooth_bg_strength,
|
187 |
+
motion_field_strength_x=motion_field_strength_x,
|
188 |
+
motion_field_strength_y=motion_field_strength_y,
|
189 |
+
).images
|
190 |
+
)[0]
|
191 |
+
return utils.create_gif(np.array(vid), 4, path=None, watermark=None)
|