File size: 8,414 Bytes
9941f21
 
a4fd448
9887bdf
 
 
 
 
 
 
 
 
 
9941f21
a4fd448
 
9941f21
54e0381
 
 
c11ea8c
 
9887bdf
c11ea8c
3cf6a6c
ab66a38
a4fd448
3cf6a6c
 
54e0381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4fd448
 
54e0381
 
 
 
 
 
 
 
 
 
320db74
54e0381
 
 
a4fd448
 
54e0381
 
a4fd448
54e0381
a4fd448
 
54e0381
 
a4fd448
 
 
54e0381
 
3cf6a6c
 
a4fd448
 
 
 
3cf6a6c
 
ab66a38
 
3cf6a6c
 
4a38f47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9887bdf
 
 
 
 
4a38f47
 
 
9887bdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a38f47
 
9887bdf
4a38f47
a4fd448
9da63d0
c62b1cd
0b77a39
a4fd448
bf108da
9da63d0
0b77a39
 
57885e4
a4fd448
82f7ab5
4a38f47
 
a58ed7a
a4fd448
 
e3803af
9da63d0
 
4a38f47
e3803af
1f54c5f
bf108da
e3803af
 
 
 
 
 
 
 
e7252da
 
bf108da
9887bdf
6d4fd39
a4fd448
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import sys
import torch
import pickle
import cv2
import gradio as gr
import numpy as np

from PIL import Image
from collections import defaultdict
from glob import glob

from matplotlib import pyplot as plt
from matplotlib import animation

from easydict import EasyDict as edict
from huggingface_hub import hf_hub_download

sys.path.append("./rome/")
sys.path.append('./DECA')

from rome.infer import Infer
from rome.src.utils.processing import process_black_shape, tensor2image
from rome.src.utils.visuals import mask_errosion

# loading models ---- create model repo
default_modnet_path = hf_hub_download('Pie31415/rome', 'modnet_photographic_portrait_matting.ckpt')
default_model_path = hf_hub_download('Pie31415/rome', 'rome.pth')

# parser configurations
args = edict({
    "save_dir": ".",
    "save_render": True,
    "model_checkpoint": default_model_path,
    "modnet_path": default_modnet_path,
    "random_seed": 0,
    "debug": False,
    "verbose": False,
    "model_image_size": 256,
    "align_source": True,
    "align_target": False,
    "align_scale": 1.25,
    "use_mesh_deformations": False,
    "subdivide_mesh": False,
    "renderer_sigma": 1e-08,
    "renderer_zfar": 100.0,
    "renderer_type": "soft_mesh",
    "renderer_texture_type": "texture_uv",
    "renderer_normalized_alphas": False,
    "deca_path": "DECA",
    "rome_data_dir": "rome/data",
    "autoenc_cat_alphas": False,
    "autoenc_align_inputs": False,
    "autoenc_use_warp": False,
    "autoenc_num_channels": 64,
    "autoenc_max_channels": 512,
    "autoenc_num_groups": 4,
    "autoenc_num_bottleneck_groups": 0,
    "autoenc_num_blocks": 2,
    "autoenc_num_layers": 4,
    "autoenc_block_type": "bottleneck",
    "neural_texture_channels": 8,
    "num_harmonic_encoding_funcs": 6,
    "unet_num_channels": 64,
    "unet_max_channels": 512,
    "unet_num_groups": 4,
    "unet_num_blocks": 1,
    "unet_num_layers": 2,
    "unet_block_type": "conv",
    "unet_skip_connection_type": "cat",
    "unet_use_normals_cond": True,
    "unet_use_vertex_cond": False,
    "unet_use_uvs_cond": False,
    "unet_pred_mask": False,
    "use_separate_seg_unet": True,
    "norm_layer_type": "gn",
    "activation_type": "relu",
    "conv_layer_type": "ws_conv",
    "deform_norm_layer_type": "gn",
    "deform_activation_type": "relu",
    "deform_conv_layer_type": "ws_conv",
    "unet_seg_weight": 0.0,
    "unet_seg_type": "bce_with_logits",
    "deform_face_tightness": 0.0001,
    "use_whole_segmentation": False,
    "mask_hair_for_neck": False,
    "use_hair_from_avatar": False,
    "use_scalp_deforms": True,
    "use_neck_deforms": True,
    "use_basis_deformer": False,
    "use_unet_deformer": True,
    "pretrained_encoder_basis_path": "",
    "pretrained_vertex_basis_path": "",
    "num_basis": 50,
    "basis_init": "pca",
    "num_vertex": 5023,
    "train_basis": True,
    "path_to_deca": "DECA",
    "path_to_linear_hair_model": "data/linear_hair.pth",  # N/A
    "path_to_mobile_model": "data/disp_model.pth",  # N/A
    "n_scalp": 60,
    "use_distill": False,
    "use_mobile_version": False,
    "deformer_path": "data/rome.pth",
    "output_unet_deformer_feats": 32,
    "use_deca_details": False,
    "use_flametex": False,
    "upsample_type": "nearest",
    "num_frequencies": 6,
    "deform_face_scale_coef": 0.0,
    "device": "cuda"
})

# download FLAME and DECA pretrained
generic_model_path = hf_hub_download('Pie31415/rome', 'generic_model.pkl')
deca_model_path = hf_hub_download('Pie31415/rome', 'deca_model.tar')

with open(generic_model_path, 'rb') as f:
    ss = pickle.load(f, encoding='latin1')

    with open('./DECA/data/generic_model.pkl', 'wb') as out:
        pickle.dump(ss, out)

with open(deca_model_path, "rb") as input:
    with open('./DECA/data/deca_model.tar', "wb") as out:
        for line in input:
            out.write(line)

# load ROME inference model
infer = Infer(args)

def image_inference(
    source_img: gr.inputs.Image = None,
    driver_img: gr.inputs.Image = None
):
    out = infer.evaluate(source_img, driver_img, crop_center=False)
    res = tensor2image(torch.cat([out['source_information']['data_dict']['source_img'][0].cpu(),
                                  out['source_information']['data_dict']['target_img'][0].cpu(),
                                  out['render_masked'].cpu(), out['pred_target_shape_img'][0].cpu()], dim=2))
    return res[..., ::-1]

def extract_frames(
    driver_vid: gr.inputs.Video = None
):
    image_frames = []
    vid = cv2.VideoCapture(driver_vid) # path to mp4

    while True:
        success, img = vid.read()

        if not success: break

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        pil_img = Image.fromarray(img)
        image_frames.append(pil_img)
    
    return image_frames

def video_inference(
    source_img: gr.inputs.Image = None,
    driver_vid: gr.inputs.Video = None
):
    image_frames = extract_frames(driver_vid)

    resulted_imgs = defaultdict(list)

    mask_hard_threshold = 0.5
    N = len(image_frames)
    for i in range(0, N, 4): # frame limits
        new_out = infer.evaluate(source_img, image_frames[i])

        mask_pred = (new_out['pred_target_unet_mask'].cpu() > mask_hard_threshold).float()
        mask_pred = mask_errosion(mask_pred[0].float().numpy() * 255)
        render = new_out['pred_target_img'].cpu() * (mask_pred) + (1 - mask_pred)
            
        normals = process_black_shape(((new_out['pred_target_normal'][0].cpu() + 1) / 2 * mask_pred + (1 - mask_pred) ) )
        normals[normals==0.5]=1.

        resulted_imgs['res_normal'].append(tensor2image(normals))
        resulted_imgs['res_mesh_images'].append(tensor2image(new_out['pred_target_shape_img'][0]))
        resulted_imgs['res_renders'].append(tensor2image(render[0]))

    video = np.array(resulted_imgs['res_renders'])

    fig = plt.figure()
    im = plt.imshow(video[0,:,:,::-1])
    plt.axis('off')
    plt.close() # this is required to not display the generated image

    def init():
        im.set_data(video[0,:,:,::-1])

    def animate(i):
        im.set_data(video[i,:,:,::-1])
        return im

    anim = animation.FuncAnimation(fig, animate, init_func=init, frames=video.shape[0], interval=30)
    anim.save("avatar.gif", dpi=300, writer = animation.PillowWriter(fps=24))
    
    return "avatar.gif"

description = """<p style='text-align: center'> Create a personal avatar from just a single image using ROME. <br> <a href='https://arxiv.org/abs/2206.08343' target='_blank'>Paper</a> | <a href='https://samsunglabs.github.io/rome' target='_blank'>Project Page</a> | <a href='https://github.com/SamsungLabs/rome' target='_blank'>Github</a> </p>"""
quote = """<blockquote style='text-align: center'> [The] system creates realistic mesh-based avatars from a single <strong>source</strong> photo. These avatars are rigged, i.e., they can be driven by the animation parameters from a different <strong>driving</strong> frame. </blockquote>"""

with gr.Blocks() as demo:
    gr.Markdown("# **<p align='center'>ROME: Realistic one-shot mesh-based head avatars</p>**")
    gr.HTML(value="<img src='file/media/tease.gif' alt='Teaser' style='display: block; margin: auto;'>")
    gr.Markdown(description)
    gr.HTML(quote)

    with gr.Tab("Image Inference"):
        with gr.Row():
            source_img = gr.Image(type="pil", label="Source image", show_label=True)
            driver_img =  gr.Image(type="pil", label="Driver image", show_label=True)
        image_output = gr.Image(label="Rendered avatar")
        image_button = gr.Button("Predict")
    with gr.Tab("Video Inference"):
        with gr.Row():
            source_img2 = gr.Image(type="pil", label="Source image", show_label=True)
            driver_vid = gr.Video(label="Driver video")
        video_output = gr.Image(label="Rendered GIF avatar")
        video_button = gr.Button("Predict")

    gr.Examples(
        examples=[
            ["./examples/lincoln.jpg", "./examples/taras2.jpg"],
            ["./examples/lincoln.jpg", "./examples/taras1.jpg"]
        ],
        inputs=[source_img, driver_img],
        outputs=[image_output],
        fn=image_inference,
        cache_examples=True
    )

    image_button.click(image_inference, inputs=[source_img, driver_img], outputs=image_output)
    video_button.click(video_inference, inputs=[source_img2, driver_vid], outputs=video_output)

demo.launch()