File size: 6,632 Bytes
a4d0945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import math
import torch
from torch import nn
from torch.nn import functional as F

from dac.model.encodec import SConv1d

from . import commons
LRELU_SLOPE = 0.1

class LayerNorm(nn.Module):
    def __init__(self, channels, eps=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.gamma = nn.Parameter(torch.ones(channels))
        self.beta = nn.Parameter(torch.zeros(channels))

    def forward(self, x):
        x = x.transpose(1, -1)
        x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
        return x.transpose(1, -1)


class ConvReluNorm(nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
        super().__init__()
        self.in_channels = in_channels
        self.hidden_channels = hidden_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.n_layers = n_layers
        self.p_dropout = p_dropout
        assert n_layers > 1, "Number of layers should be larger than 0."

        self.conv_layers = nn.ModuleList()
        self.norm_layers = nn.ModuleList()
        self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
        self.norm_layers.append(LayerNorm(hidden_channels))
        self.relu_drop = nn.Sequential(
            nn.ReLU(),
            nn.Dropout(p_dropout))
        for _ in range(n_layers - 1):
            self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
            self.norm_layers.append(LayerNorm(hidden_channels))
        self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
        self.proj.weight.data.zero_()
        self.proj.bias.data.zero_()

    def forward(self, x, x_mask):
        x_org = x
        for i in range(self.n_layers):
            x = self.conv_layers[i](x * x_mask)
            x = self.norm_layers[i](x)
            x = self.relu_drop(x)
        x = x_org + self.proj(x)
        return x * x_mask


class DDSConv(nn.Module):
    """

    Dialted and Depth-Separable Convolution

    """

    def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
        super().__init__()
        self.channels = channels
        self.kernel_size = kernel_size
        self.n_layers = n_layers
        self.p_dropout = p_dropout

        self.drop = nn.Dropout(p_dropout)
        self.convs_sep = nn.ModuleList()
        self.convs_1x1 = nn.ModuleList()
        self.norms_1 = nn.ModuleList()
        self.norms_2 = nn.ModuleList()
        for i in range(n_layers):
            dilation = kernel_size ** i
            padding = (kernel_size * dilation - dilation) // 2
            self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
                                            groups=channels, dilation=dilation, padding=padding
                                            ))
            self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
            self.norms_1.append(LayerNorm(channels))
            self.norms_2.append(LayerNorm(channels))

    def forward(self, x, x_mask, g=None):
        if g is not None:
            x = x + g
        for i in range(self.n_layers):
            y = self.convs_sep[i](x * x_mask)
            y = self.norms_1[i](y)
            y = F.gelu(y)
            y = self.convs_1x1[i](y)
            y = self.norms_2[i](y)
            y = F.gelu(y)
            y = self.drop(y)
            x = x + y
        return x * x_mask


class WN(torch.nn.Module):
    def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, causal=False):
        super(WN, self).__init__()
        conv1d_type = SConv1d
        assert (kernel_size % 2 == 1)
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size,
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.gin_channels = gin_channels
        self.p_dropout = p_dropout

        self.in_layers = torch.nn.ModuleList()
        self.res_skip_layers = torch.nn.ModuleList()
        self.drop = nn.Dropout(p_dropout)

        if gin_channels != 0:
            self.cond_layer = conv1d_type(gin_channels, 2 * hidden_channels * n_layers, 1, norm='weight_norm')

        for i in range(n_layers):
            dilation = dilation_rate ** i
            padding = int((kernel_size * dilation - dilation) / 2)
            in_layer = conv1d_type(hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation,
                                   padding=padding, norm='weight_norm', causal=causal)
            self.in_layers.append(in_layer)

            # last one is not necessary
            if i < n_layers - 1:
                res_skip_channels = 2 * hidden_channels
            else:
                res_skip_channels = hidden_channels

            res_skip_layer = conv1d_type(hidden_channels, res_skip_channels, 1, norm='weight_norm', causal=causal)
            self.res_skip_layers.append(res_skip_layer)

    def forward(self, x, x_mask, g=None, **kwargs):
        output = torch.zeros_like(x)
        n_channels_tensor = torch.IntTensor([self.hidden_channels])

        if g is not None:
            g = self.cond_layer(g)

        for i in range(self.n_layers):
            x_in = self.in_layers[i](x)
            if g is not None:
                cond_offset = i * 2 * self.hidden_channels
                g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :]
            else:
                g_l = torch.zeros_like(x_in)

            acts = commons.fused_add_tanh_sigmoid_multiply(
                x_in,
                g_l,
                n_channels_tensor)
            acts = self.drop(acts)

            res_skip_acts = self.res_skip_layers[i](acts)
            if i < self.n_layers - 1:
                res_acts = res_skip_acts[:, :self.hidden_channels, :]
                x = (x + res_acts) * x_mask
                output = output + res_skip_acts[:, self.hidden_channels:, :]
            else:
                output = output + res_skip_acts
        return output * x_mask

    def remove_weight_norm(self):
        if self.gin_channels != 0:
            torch.nn.utils.remove_weight_norm(self.cond_layer)
        for l in self.in_layers:
            torch.nn.utils.remove_weight_norm(l)
        for l in self.res_skip_layers:
            torch.nn.utils.remove_weight_norm(l)