Spaces:
Running
on
Zero
Running
on
Zero
import warnings | |
from pathlib import Path | |
import argbind | |
import numpy as np | |
import torch | |
from audiotools import AudioSignal | |
from tqdm import tqdm | |
from dac import DACFile | |
from dac.utils import load_model | |
warnings.filterwarnings("ignore", category=UserWarning) | |
def decode( | |
input: str, | |
output: str = "", | |
weights_path: str = "", | |
model_tag: str = "latest", | |
model_bitrate: str = "8kbps", | |
device: str = "cuda", | |
model_type: str = "44khz", | |
verbose: bool = False, | |
): | |
"""Decode audio from codes. | |
Parameters | |
---------- | |
input : str | |
Path to input directory or file | |
output : str, optional | |
Path to output directory, by default "". | |
If `input` is a directory, the directory sub-tree relative to `input` is re-created in `output`. | |
weights_path : str, optional | |
Path to weights file, by default "". If not specified, the weights file will be downloaded from the internet using the | |
model_tag and model_type. | |
model_tag : str, optional | |
Tag of the model to use, by default "latest". Ignored if `weights_path` is specified. | |
model_bitrate: str | |
Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps". | |
device : str, optional | |
Device to use, by default "cuda". If "cpu", the model will be loaded on the CPU. | |
model_type : str, optional | |
The type of model to use. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz". Ignored if `weights_path` is specified. | |
""" | |
generator = load_model( | |
model_type=model_type, | |
model_bitrate=model_bitrate, | |
tag=model_tag, | |
load_path=weights_path, | |
) | |
generator.to(device) | |
generator.eval() | |
# Find all .dac files in input directory | |
_input = Path(input) | |
input_files = list(_input.glob("**/*.dac")) | |
# If input is a .dac file, add it to the list | |
if _input.suffix == ".dac": | |
input_files.append(_input) | |
# Create output directory | |
output = Path(output) | |
output.mkdir(parents=True, exist_ok=True) | |
for i in tqdm(range(len(input_files)), desc=f"Decoding files"): | |
# Load file | |
artifact = DACFile.load(input_files[i]) | |
# Reconstruct audio from codes | |
recons = generator.decompress(artifact, verbose=verbose) | |
# Compute output path | |
relative_path = input_files[i].relative_to(input) | |
output_dir = output / relative_path.parent | |
if not relative_path.name: | |
output_dir = output | |
relative_path = input_files[i] | |
output_name = relative_path.with_suffix(".wav").name | |
output_path = output_dir / output_name | |
output_path.parent.mkdir(parents=True, exist_ok=True) | |
# Write to file | |
recons.write(output_path) | |
if __name__ == "__main__": | |
args = argbind.parse_args() | |
with argbind.scope(args): | |
decode() | |