FAcodecV2 / modules /quantize.py
Plachta's picture
Upload 69 files
a4d0945 verified
raw
history blame
23.8 kB
from dac.nn.quantize import ResidualVectorQuantize
from torch import nn
from modules.wavenet import WN
from modules.style_encoder import StyleEncoder
from gradient_reversal import GradientReversal
import torch
import torchaudio
import torchaudio.functional as audio_F
import numpy as np
from alias_free_torch import *
from torch.nn.utils import weight_norm
from torch import nn, sin, pow
from einops.layers.torch import Rearrange
from dac.model.encodec import SConv1d
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
class SnakeBeta(nn.Module):
"""
A modified Snake function which uses separate parameters for the magnitude of the periodic components
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
References:
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snakebeta(256)
>>> x = torch.randn(256)
>>> x = a1(x)
"""
def __init__(
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
):
"""
Initialization.
INPUT:
- in_features: shape of the input
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
alpha is initialized to 1 by default, higher values = higher-frequency.
beta is initialized to 1 by default, higher values = higher-magnitude.
alpha will be trained along with the rest of your model.
"""
super(SnakeBeta, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
"""
Forward pass of the function.
Applies the function to the input elementwise.
SnakeBeta := x + 1/b * sin^2 (xa)
"""
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
beta = self.beta.unsqueeze(0).unsqueeze(-1)
if self.alpha_logscale:
alpha = torch.exp(alpha)
beta = torch.exp(beta)
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x
class ResidualUnit(nn.Module):
def __init__(self, dim: int = 16, dilation: int = 1):
super().__init__()
pad = ((7 - 1) * dilation) // 2
self.block = nn.Sequential(
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
WNConv1d(dim, dim, kernel_size=1),
)
def forward(self, x):
return x + self.block(x)
class CNNLSTM(nn.Module):
def __init__(self, indim, outdim, head, global_pred=False):
super().__init__()
self.global_pred = global_pred
self.model = nn.Sequential(
ResidualUnit(indim, dilation=1),
ResidualUnit(indim, dilation=2),
ResidualUnit(indim, dilation=3),
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
Rearrange("b c t -> b t c"),
)
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])
def forward(self, x):
# x: [B, C, T]
x = self.model(x)
if self.global_pred:
x = torch.mean(x, dim=1, keepdim=False)
outs = [head(x) for head in self.heads]
return outs
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
class MFCC(nn.Module):
def __init__(self, n_mfcc=40, n_mels=80):
super(MFCC, self).__init__()
self.n_mfcc = n_mfcc
self.n_mels = n_mels
self.norm = 'ortho'
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
self.register_buffer('dct_mat', dct_mat)
def forward(self, mel_specgram):
if len(mel_specgram.shape) == 2:
mel_specgram = mel_specgram.unsqueeze(0)
unsqueezed = True
else:
unsqueezed = False
# (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
# -> (channel, time, n_mfcc).tranpose(...)
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
# unpack batch
if unsqueezed:
mfcc = mfcc.squeeze(0)
return mfcc
class FAquantizer(nn.Module):
def __init__(self, in_dim=1024,
n_p_codebooks=1,
n_c_codebooks=2,
n_t_codebooks=2,
n_r_codebooks=3,
codebook_size=1024,
codebook_dim=8,
quantizer_dropout=0.5,
causal=False,
separate_prosody_encoder=False,
timbre_norm=False,):
super(FAquantizer, self).__init__()
conv1d_type = SConv1d# if causal else nn.Conv1d
self.prosody_quantizer = ResidualVectorQuantize(
input_dim=in_dim,
n_codebooks=n_p_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
self.content_quantizer = ResidualVectorQuantize(
input_dim=in_dim,
n_codebooks=n_c_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
if not timbre_norm:
self.timbre_quantizer = ResidualVectorQuantize(
input_dim=in_dim,
n_codebooks=n_t_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
else:
self.timbre_encoder = StyleEncoder(in_dim=80, hidden_dim=512, out_dim=in_dim)
self.timbre_linear = nn.Linear(1024, 1024 * 2)
self.timbre_linear.bias.data[:1024] = 1
self.timbre_linear.bias.data[1024:] = 0
self.timbre_norm = nn.LayerNorm(1024, elementwise_affine=False)
self.residual_quantizer = ResidualVectorQuantize(
input_dim=in_dim,
n_codebooks=n_r_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
if separate_prosody_encoder:
self.melspec_linear = conv1d_type(in_channels=20, out_channels=256, kernel_size=1, causal=causal)
self.melspec_encoder = WN(hidden_channels=256, kernel_size=5, dilation_rate=1, n_layers=8, gin_channels=0, p_dropout=0.2, causal=causal)
self.melspec_linear2 = conv1d_type(in_channels=256, out_channels=1024, kernel_size=1, causal=causal)
else:
pass
self.separate_prosody_encoder = separate_prosody_encoder
self.prob_random_mask_residual = 0.75
SPECT_PARAMS = {
"n_fft": 2048,
"win_length": 1200,
"hop_length": 300,
}
MEL_PARAMS = {
"n_mels": 80,
}
self.to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS
)
self.mel_mean, self.mel_std = -4, 4
self.frame_rate = 24000 / 300
self.hop_length = 300
self.is_timbre_norm = timbre_norm
if timbre_norm:
self.forward = self.forward_v2
def preprocess(self, wave_tensor, n_bins=20):
mel_tensor = self.to_mel(wave_tensor.squeeze(1))
mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std
return mel_tensor[:, :n_bins, :int(wave_tensor.size(-1) / self.hop_length)]
@torch.no_grad()
def decode(self, codes):
code_c, code_p, code_t = codes.split([1, 1, 2], dim=1)
z_c = self.content_quantizer.from_codes(code_c)[0]
z_p = self.prosody_quantizer.from_codes(code_p)[0]
z_t = self.timbre_quantizer.from_codes(code_t)[0]
z = z_c + z_p + z_t
return z, [z_c, z_p, z_t]
@torch.no_grad()
def encode(self, x, wave_segments, n_c=1):
outs = 0
if self.separate_prosody_encoder:
prosody_feature = self.preprocess(wave_segments)
f0_input = prosody_feature # (B, T, 20)
f0_input = self.melspec_linear(f0_input)
f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(
f0_input.device).bool())
f0_input = self.melspec_linear2(f0_input)
common_min_size = min(f0_input.size(2), x.size(2))
f0_input = f0_input[:, :, :common_min_size]
x = x[:, :, :common_min_size]
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
f0_input, 1
)
outs += z_p.detach()
else:
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
x, 1
)
outs += z_p.detach()
z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
x, n_c
)
outs += z_c.detach()
timbre_residual_feature = x - z_p.detach() - z_c.detach()
z_t, codes_t, latents_t, commitment_loss_t, codebook_loss_t = self.timbre_quantizer(
timbre_residual_feature, 2
)
outs += z_t # we should not detach timbre
residual_feature = timbre_residual_feature - z_t
z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
residual_feature, 3
)
return [codes_c, codes_p, codes_t, codes_r], [z_c, z_p, z_t, z_r]
def forward(self, x, wave_segments, noise_added_flags, recon_noisy_flags, n_c=2, n_t=2):
# timbre = self.timbre_encoder(mels, sequence_mask(mel_lens, mels.size(-1)).unsqueeze(1))
# timbre = self.timbre_encoder(mel_segments, torch.ones(mel_segments.size(0), 1, mel_segments.size(2)).bool().to(mel_segments.device))
outs = 0
if self.separate_prosody_encoder:
prosody_feature = self.preprocess(wave_segments)
f0_input = prosody_feature # (B, T, 20)
f0_input = self.melspec_linear(f0_input)
f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(f0_input.device).bool())
f0_input = self.melspec_linear2(f0_input)
common_min_size = min(f0_input.size(2), x.size(2))
f0_input = f0_input[:, :, :common_min_size]
x = x[:, :, :common_min_size]
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
f0_input, 1
)
outs += z_p.detach()
else:
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
x, 1
)
outs += z_p.detach()
z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
x, n_c
)
outs += z_c.detach()
timbre_residual_feature = x - z_p.detach() - z_c.detach()
z_t, codes_t, latents_t, commitment_loss_t, codebook_loss_t = self.timbre_quantizer(
timbre_residual_feature, n_t
)
outs += z_t # we should not detach timbre
residual_feature = timbre_residual_feature - z_t
z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
residual_feature, 3
)
bsz = z_r.shape[0]
res_mask = np.random.choice(
[0, 1],
size=bsz,
p=[
self.prob_random_mask_residual,
1 - self.prob_random_mask_residual,
],
)
res_mask = (
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
) # (B, 1, 1)
res_mask = res_mask.to(
device=z_r.device, dtype=z_r.dtype
)
noise_must_on = noise_added_flags * recon_noisy_flags
noise_must_off = noise_added_flags * (~recon_noisy_flags)
res_mask[noise_must_on] = 1
res_mask[noise_must_off] = 0
outs += z_r * res_mask
quantized = [z_p, z_c, z_t, z_r]
commitment_losses = commitment_loss_p + commitment_loss_c + commitment_loss_t + commitment_loss_r
codebook_losses = codebook_loss_p + codebook_loss_c + codebook_loss_t + codebook_loss_r
return outs, quantized, commitment_losses, codebook_losses
def forward_v2(self, x, wave_segments, n_c=1, n_t=2, full_waves=None, wave_lens=None, return_codes=False):
# timbre = self.timbre_encoder(x, sequence_mask(mel_lens, mels.size(-1)).unsqueeze(1))
if full_waves is None:
mel = self.preprocess(wave_segments, n_bins=80)
timbre = self.timbre_encoder(mel, torch.ones(mel.size(0), 1, mel.size(2)).bool().to(mel.device))
else:
mel = self.preprocess(full_waves, n_bins=80)
timbre = self.timbre_encoder(mel, sequence_mask(wave_lens // self.hop_length, mel.size(-1)).unsqueeze(1))
outs = 0
if self.separate_prosody_encoder:
prosody_feature = self.preprocess(wave_segments)
f0_input = prosody_feature # (B, T, 20)
f0_input = self.melspec_linear(f0_input)
f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(
f0_input.device).bool())
f0_input = self.melspec_linear2(f0_input)
common_min_size = min(f0_input.size(2), x.size(2))
f0_input = f0_input[:, :, :common_min_size]
x = x[:, :, :common_min_size]
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
f0_input, 1
)
outs += z_p.detach()
else:
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
x, 1
)
outs += z_p.detach()
z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
x, n_c
)
outs += z_c.detach()
residual_feature = x - z_p.detach() - z_c.detach()
z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
residual_feature, 3
)
bsz = z_r.shape[0]
res_mask = np.random.choice(
[0, 1],
size=bsz,
p=[
self.prob_random_mask_residual,
1 - self.prob_random_mask_residual,
],
)
res_mask = (
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
) # (B, 1, 1)
res_mask = res_mask.to(
device=z_r.device, dtype=z_r.dtype
)
if not self.training:
res_mask = torch.ones_like(res_mask)
outs += z_r * res_mask
quantized = [z_p, z_c, z_r]
codes = [codes_p, codes_c, codes_r]
commitment_losses = commitment_loss_p + commitment_loss_c + commitment_loss_r
codebook_losses = codebook_loss_p + codebook_loss_c + codebook_loss_r
style = self.timbre_linear(timbre).unsqueeze(2) # (B, 2d, 1)
gamma, beta = style.chunk(2, 1) # (B, d, 1)
outs = outs.transpose(1, 2)
outs = self.timbre_norm(outs)
outs = outs.transpose(1, 2)
outs = outs * gamma + beta
if return_codes:
return outs, quantized, commitment_losses, codebook_losses, timbre, codes
else:
return outs, quantized, commitment_losses, codebook_losses, timbre
class FApredictors(nn.Module):
def __init__(self,
in_dim=1024,
use_gr_content_f0=False,
use_gr_prosody_phone=False,
use_gr_residual_f0=False,
use_gr_residual_phone=False,
use_gr_timbre_content=True,
use_gr_timbre_prosody=True,
use_gr_x_timbre=False,
norm_f0=True,
timbre_norm=False,
use_gr_content_global_f0=False,
):
super(FApredictors, self).__init__()
self.f0_predictor = CNNLSTM(in_dim, 1, 2)
self.phone_predictor = CNNLSTM(in_dim, 1024, 1)
if timbre_norm:
self.timbre_predictor = nn.Linear(in_dim, 20000)
else:
self.timbre_predictor = CNNLSTM(in_dim, 20000, 1, global_pred=True)
self.use_gr_content_f0 = use_gr_content_f0
self.use_gr_prosody_phone = use_gr_prosody_phone
self.use_gr_residual_f0 = use_gr_residual_f0
self.use_gr_residual_phone = use_gr_residual_phone
self.use_gr_timbre_content = use_gr_timbre_content
self.use_gr_timbre_prosody = use_gr_timbre_prosody
self.use_gr_x_timbre = use_gr_x_timbre
self.rev_f0_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1, 2)
)
self.rev_content_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1024, 1)
)
self.rev_timbre_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 20000, 1, global_pred=True)
)
self.norm_f0 = norm_f0
self.timbre_norm = timbre_norm
if timbre_norm:
self.forward = self.forward_v2
self.global_f0_predictor = nn.Linear(in_dim, 1)
self.use_gr_content_global_f0 = use_gr_content_global_f0
if use_gr_content_global_f0:
self.rev_global_f0_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1, 1, global_pred=True)
)
def forward(self, quantized):
prosody_latent = quantized[0]
content_latent = quantized[1]
timbre_latent = quantized[2]
residual_latent = quantized[3]
content_pred = self.phone_predictor(content_latent)[0]
if self.norm_f0:
spk_pred = self.timbre_predictor(timbre_latent)[0]
f0_pred, uv_pred = self.f0_predictor(prosody_latent)
else:
spk_pred = self.timbre_predictor(timbre_latent + prosody_latent)[0]
f0_pred, uv_pred = self.f0_predictor(prosody_latent + timbre_latent)
prosody_rev_latent = torch.zeros_like(quantized[0])
if self.use_gr_content_f0:
prosody_rev_latent += quantized[1]
if self.use_gr_timbre_prosody:
prosody_rev_latent += quantized[2]
if self.use_gr_residual_f0:
prosody_rev_latent += quantized[3]
rev_f0_pred, rev_uv_pred = self.rev_f0_predictor(prosody_rev_latent)
content_rev_latent = torch.zeros_like(quantized[1])
if self.use_gr_prosody_phone:
content_rev_latent += quantized[0]
if self.use_gr_timbre_content:
content_rev_latent += quantized[2]
if self.use_gr_residual_phone:
content_rev_latent += quantized[3]
rev_content_pred = self.rev_content_predictor(content_rev_latent)[0]
if self.norm_f0:
timbre_rev_latent = quantized[0] + quantized[1] + quantized[3]
else:
timbre_rev_latent = quantized[1] + quantized[3]
if self.use_gr_x_timbre:
x_spk_pred = self.rev_timbre_predictor(timbre_rev_latent)[0]
else:
x_spk_pred = None
preds = {
'f0': f0_pred,
'uv': uv_pred,
'content': content_pred,
'timbre': spk_pred,
}
rev_preds = {
'rev_f0': rev_f0_pred,
'rev_uv': rev_uv_pred,
'rev_content': rev_content_pred,
'x_timbre': x_spk_pred,
}
return preds, rev_preds
def forward_v2(self, quantized, timbre):
assert self.use_gr_content_global_f0
prosody_latent = quantized[0]
content_latent = quantized[1]
residual_latent = quantized[2]
content_pred = self.phone_predictor(content_latent)[0]
# spk_pred = self.timbre_predictor(timbre)[0]
f0_pred, uv_pred = self.f0_predictor(prosody_latent)
prosody_rev_latent = torch.zeros_like(prosody_latent)
if self.use_gr_content_f0:
prosody_rev_latent += content_latent
if self.use_gr_residual_f0:
prosody_rev_latent += residual_latent
rev_f0_pred, rev_uv_pred = self.rev_f0_predictor(prosody_rev_latent)
content_rev_latent = torch.zeros_like(content_latent)
if self.use_gr_prosody_phone:
content_rev_latent += prosody_latent
if self.use_gr_residual_phone:
content_rev_latent += residual_latent
rev_content_pred = self.rev_content_predictor(content_rev_latent)[0]
timbre_rev_latent = prosody_latent + content_latent + residual_latent
if self.use_gr_x_timbre:
x_spk_pred = self.rev_timbre_predictor(timbre_rev_latent)[0]
else:
x_spk_pred = None
global_f0_pred = self.global_f0_predictor(timbre)
if self.use_gr_content_global_f0:
rev_global_f0_pred = self.rev_global_f0_predictor(content_latent + prosody_latent + residual_latent)[0]
preds = {
'f0': f0_pred,
'uv': uv_pred,
'content': content_pred,
'timbre': None,
'global_f0': global_f0_pred,
}
rev_preds = {
'rev_f0': rev_f0_pred,
'rev_uv': rev_uv_pred,
'rev_content': rev_content_pred,
'x_timbre': x_spk_pred,
'rev_global_f0': rev_global_f0_pred,
}
return preds, rev_preds