Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from torchaudio.transforms import MelSpectrogram | |
def adversarial_g_loss(y_disc_gen): | |
"""Hinge loss""" | |
loss = 0.0 | |
for i in range(len(y_disc_gen)): | |
stft_loss = F.relu(1 - y_disc_gen[i]).mean().squeeze() | |
loss += stft_loss | |
return loss / len(y_disc_gen) | |
def feature_loss(fmap_r, fmap_gen): | |
loss = 0.0 | |
for i in range(len(fmap_r)): | |
for j in range(len(fmap_r[i])): | |
stft_loss = ((fmap_r[i][j] - fmap_gen[i][j]).abs() / | |
(fmap_r[i][j].abs().mean())).mean() | |
loss += stft_loss | |
return loss / (len(fmap_r) * len(fmap_r[0])) | |
def sim_loss(y_disc_r, y_disc_gen): | |
loss = 0.0 | |
for i in range(len(y_disc_r)): | |
loss += F.mse_loss(y_disc_r[i], y_disc_gen[i]) | |
return loss / len(y_disc_r) | |
# def sisnr_loss(x, s, eps=1e-8): | |
# """ | |
# calculate training loss | |
# input: | |
# x: separated signal, N x S tensor, estimate value | |
# s: reference signal, N x S tensor, True value | |
# Return: | |
# sisnr: N tensor | |
# """ | |
# if x.shape != s.shape: | |
# if x.shape[-1] > s.shape[-1]: | |
# x = x[:, :s.shape[-1]] | |
# else: | |
# s = s[:, :x.shape[-1]] | |
# def l2norm(mat, keepdim=False): | |
# return torch.norm(mat, dim=-1, keepdim=keepdim) | |
# if x.shape != s.shape: | |
# raise RuntimeError( | |
# "Dimention mismatch when calculate si-snr, {} vs {}".format( | |
# x.shape, s.shape)) | |
# x_zm = x - torch.mean(x, dim=-1, keepdim=True) | |
# s_zm = s - torch.mean(s, dim=-1, keepdim=True) | |
# t = torch.sum( | |
# x_zm * s_zm, dim=-1, | |
# keepdim=True) * s_zm / (l2norm(s_zm, keepdim=True)**2 + eps) | |
# loss = -20. * torch.log10(eps + l2norm(t) / (l2norm(x_zm - t) + eps)) | |
# return torch.sum(loss) / x.shape[0] | |
LAMBDA_WAV = 100 | |
LAMBDA_ADV = 1 | |
LAMBDA_REC = 1 | |
LAMBDA_COM = 1000 | |
LAMBDA_FEAT = 1 | |
discriminator_iter_start = 500 | |
def reconstruction_loss(x, G_x, eps=1e-7): | |
# NOTE (lsx): hard-coded now | |
L = LAMBDA_WAV * F.mse_loss(x, G_x) # wav L1 loss | |
# loss_sisnr = sisnr_loss(G_x, x) # | |
# L += 0.01*loss_sisnr | |
# 2^6=64 -> 2^10=1024 | |
# NOTE (lsx): add 2^11 | |
for i in range(6, 12): | |
# for i in range(5, 12): # Encodec setting | |
s = 2**i | |
melspec = MelSpectrogram( | |
sample_rate=16000, | |
n_fft=max(s, 512), | |
win_length=s, | |
hop_length=s // 4, | |
n_mels=64, | |
wkwargs={"device": G_x.device}).to(G_x.device) | |
S_x = melspec(x) | |
S_G_x = melspec(G_x) | |
l1_loss = (S_x - S_G_x).abs().mean() | |
l2_loss = (((torch.log(S_x.abs() + eps) - torch.log(S_G_x.abs() + eps))**2).mean(dim=-2)**0.5).mean() | |
alpha = (s / 2) ** 0.5 | |
L += (l1_loss + alpha * l2_loss) | |
return L | |
def criterion_d(y_disc_r, y_disc_gen, fmap_r_det, fmap_gen_det, y_df_hat_r, | |
y_df_hat_g, fmap_f_r, fmap_f_g, y_ds_hat_r, y_ds_hat_g, | |
fmap_s_r, fmap_s_g): | |
"""Hinge Loss""" | |
loss = 0.0 | |
loss1 = 0.0 | |
loss2 = 0.0 | |
loss3 = 0.0 | |
for i in range(len(y_disc_r)): | |
loss1 += F.relu(1 - y_disc_r[i]).mean() + F.relu(1 + y_disc_gen[ | |
i]).mean() | |
for i in range(len(y_df_hat_r)): | |
loss2 += F.relu(1 - y_df_hat_r[i]).mean() + F.relu(1 + y_df_hat_g[ | |
i]).mean() | |
for i in range(len(y_ds_hat_r)): | |
loss3 += F.relu(1 - y_ds_hat_r[i]).mean() + F.relu(1 + y_ds_hat_g[ | |
i]).mean() | |
loss = (loss1 / len(y_disc_gen) + loss2 / len(y_df_hat_r) + loss3 / | |
len(y_ds_hat_r)) / 3.0 | |
return loss | |
def criterion_g(commit_loss, x, G_x, fmap_r, fmap_gen, y_disc_r, y_disc_gen, | |
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g, y_ds_hat_r, | |
y_ds_hat_g, fmap_s_r, fmap_s_g, args): | |
adv_g_loss = adversarial_g_loss(y_disc_gen) | |
feat_loss = (feature_loss(fmap_r, fmap_gen) + sim_loss( | |
y_disc_r, y_disc_gen) + feature_loss(fmap_f_r, fmap_f_g) + sim_loss( | |
y_df_hat_r, y_df_hat_g) + feature_loss(fmap_s_r, fmap_s_g) + | |
sim_loss(y_ds_hat_r, y_ds_hat_g)) / 3.0 | |
rec_loss = reconstruction_loss(x.contiguous(), G_x.contiguous(), args) | |
total_loss = args.LAMBDA_COM * commit_loss + args.LAMBDA_ADV * adv_g_loss + args.LAMBDA_FEAT * feat_loss + args.LAMBDA_REC * rec_loss | |
return total_loss, adv_g_loss, feat_loss, rec_loss | |
def adopt_weight(weight, global_step, threshold=0, value=0.): | |
if global_step < threshold: | |
weight = value | |
return weight | |
def adopt_dis_weight(weight, global_step, threshold=0, value=0.): | |
# 0,3,6,9,13....这些时间步,不更新dis | |
if global_step % 3 == 0: | |
weight = value | |
return weight | |
def calculate_adaptive_weight(nll_loss, g_loss, last_layer, args): | |
if last_layer is not None: | |
nll_grads = torch.autograd.grad( | |
nll_loss, last_layer, retain_graph=True)[0] | |
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
else: | |
print('last_layer cannot be none') | |
assert 1 == 2 | |
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) | |
d_weight = torch.clamp(d_weight, 1.0, 1.0).detach() | |
d_weight = d_weight * args.LAMBDA_ADV | |
return d_weight | |
def loss_g(codebook_loss, | |
inputs, | |
reconstructions, | |
fmap_r, | |
fmap_gen, | |
y_disc_r, | |
y_disc_gen, | |
global_step, | |
y_df_hat_r, | |
y_df_hat_g, | |
y_ds_hat_r, | |
y_ds_hat_g, | |
fmap_f_r, | |
fmap_f_g, | |
fmap_s_r, | |
fmap_s_g, | |
last_layer=None, | |
is_training=True, | |
args=None): | |
""" | |
args: | |
codebook_loss: commit loss. | |
inputs: ground-truth wav. | |
reconstructions: reconstructed wav. | |
fmap_r: real stft-D feature map. | |
fmap_gen: fake stft-D feature map. | |
y_disc_r: real stft-D logits. | |
y_disc_gen: fake stft-D logits. | |
global_step: global training step. | |
y_df_hat_r: real MPD logits. | |
y_df_hat_g: fake MPD logits. | |
y_ds_hat_r: real MSD logits. | |
y_ds_hat_g: fake MSD logits. | |
fmap_f_r: real MPD feature map. | |
fmap_f_g: fake MPD feature map. | |
fmap_s_r: real MSD feature map. | |
fmap_s_g: fake MSD feature map. | |
""" | |
rec_loss = reconstruction_loss(inputs.contiguous(), | |
reconstructions.contiguous()) | |
adv_g_loss = adversarial_g_loss(y_disc_gen) | |
adv_mpd_loss = adversarial_g_loss(y_df_hat_g) | |
adv_msd_loss = adversarial_g_loss(y_ds_hat_g) | |
adv_loss = (adv_g_loss + adv_mpd_loss + adv_msd_loss | |
) / 3.0 # NOTE(lsx): need to divide by 3? | |
feat_loss = feature_loss( | |
fmap_r, | |
fmap_gen) #+ sim_loss(y_disc_r, y_disc_gen) # NOTE(lsx): need logits? | |
feat_loss_mpd = feature_loss(fmap_f_r, | |
fmap_f_g) #+ sim_loss(y_df_hat_r, y_df_hat_g) | |
feat_loss_msd = feature_loss(fmap_s_r, | |
fmap_s_g) #+ sim_loss(y_ds_hat_r, y_ds_hat_g) | |
feat_loss_tot = (feat_loss + feat_loss_mpd + feat_loss_msd) / 3.0 | |
d_weight = torch.tensor(1.0) | |
# try: | |
# d_weight = calculate_adaptive_weight(rec_loss, adv_g_loss, last_layer, args) # 动态调整重构损失和对抗损失 | |
# except RuntimeError: | |
# assert not is_training | |
# d_weight = torch.tensor(0.0) | |
disc_factor = adopt_weight( | |
LAMBDA_ADV, global_step, threshold=discriminator_iter_start) | |
if disc_factor == 0.: | |
fm_loss_wt = 0 | |
else: | |
fm_loss_wt = LAMBDA_FEAT | |
#feat_factor = adopt_weight(args.LAMBDA_FEAT, global_step, threshold=args.discriminator_iter_start) | |
loss = rec_loss + d_weight * disc_factor * adv_loss + \ | |
fm_loss_wt * feat_loss_tot + LAMBDA_COM * codebook_loss.mean() | |
return loss, rec_loss, adv_loss, feat_loss_tot, d_weight | |
def loss_dis(y_disc_r_det, y_disc_gen_det, fmap_r_det, fmap_gen_det, y_df_hat_r, | |
y_df_hat_g, fmap_f_r, fmap_f_g, y_ds_hat_r, y_ds_hat_g, fmap_s_r, | |
fmap_s_g, global_step): | |
disc_factor = adopt_weight( | |
LAMBDA_ADV, global_step, threshold=discriminator_iter_start) | |
d_loss = disc_factor * criterion_d(y_disc_r_det, y_disc_gen_det, fmap_r_det, | |
fmap_gen_det, y_df_hat_r, y_df_hat_g, | |
fmap_f_r, fmap_f_g, y_ds_hat_r, | |
y_ds_hat_g, fmap_s_r, fmap_s_g) | |
return d_loss | |
class AttentionCTCLoss(torch.nn.Module): | |
def __init__(self, blank_logprob=-1): | |
super(AttentionCTCLoss, self).__init__() | |
self.log_softmax = torch.nn.LogSoftmax(dim=3) | |
self.blank_logprob = blank_logprob | |
self.CTCLoss = torch.nn.CTCLoss(zero_infinity=True) | |
def forward(self, attn_logprob, in_lens, out_lens): | |
key_lens = in_lens | |
query_lens = out_lens | |
attn_logprob_padded = F.pad( | |
input=attn_logprob, pad=(1, 0, 0, 0, 0, 0, 0, 0), | |
value=self.blank_logprob) | |
cost_total = 0.0 | |
for bid in range(attn_logprob.shape[0]): | |
target_seq = torch.arange(1, key_lens[bid]+1).unsqueeze(0) | |
curr_logprob = attn_logprob_padded[bid].permute(1, 0, 2)[ | |
:query_lens[bid], :, :key_lens[bid]+1] | |
curr_logprob = self.log_softmax(curr_logprob[None])[0] | |
ctc_cost = self.CTCLoss(curr_logprob, target_seq, | |
input_lengths=query_lens[bid:bid+1], | |
target_lengths=key_lens[bid:bid+1]) | |
cost_total += ctc_cost | |
cost = cost_total/attn_logprob.shape[0] | |
return cost | |
class FocalLoss(torch.nn.Module): | |
def __init__(self, gamma=0, eps=1e-7): | |
super(FocalLoss, self).__init__() | |
self.gamma = gamma | |
self.eps = eps | |
self.ce = torch.nn.CrossEntropyLoss() | |
def forward(self, input, target): | |
logp = self.ce(input, target) | |
p = torch.exp(-logp) | |
loss = (1 - p) ** self.gamma * logp | |
return loss.mean() | |
def feature_loss(fmap_r, fmap_g): | |
loss = 0 | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss += torch.mean(torch.abs(rl - gl)) | |
return loss * 2 | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
r_losses = [] | |
g_losses = [] | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean((1 - dr) ** 2) | |
g_loss = torch.mean(dg ** 2) | |
loss += (r_loss + g_loss) | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
return loss, r_losses, g_losses | |
def generator_loss(disc_outputs): | |
loss = 0 | |
gen_losses = [] | |
for dg in disc_outputs: | |
l = torch.mean((1 - dg) ** 2) | |
gen_losses.append(l) | |
loss += l | |
return loss, gen_losses | |