Plachta's picture
Upload 69 files
a4d0945 verified
import torch
import torch.nn as nn
class MultiLayeredConv1d(torch.nn.Module):
"""Multi-layered conv1d for Transformer block.
This is a module of multi-layered conv1d designed to replace position-wise feed-forward network
in Transformer block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
Args:
in_chans (int): Number of input channels.
hidden_chans (int): Number of hidden channels.
kernel_size (int): Kernel size of conv1d.
dropout_rate (float): Dropout rate.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(
self, in_chans: int, hidden_chans: int, kernel_size: int, dropout_rate: float
):
super(MultiLayeredConv1d, self).__init__()
self.w_1 = torch.nn.Conv1d(
in_chans,
hidden_chans,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
)
self.w_2 = torch.nn.Conv1d(
hidden_chans, in_chans, 1, stride=1, padding=(1 - 1) // 2
)
self.dropout = torch.nn.Dropout(dropout_rate)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Calculate forward propagation.
Args:
x (Tensor): Batch of input tensors (B, *, in_chans).
Returns:
Tensor: Batch of output tensors (B, *, hidden_chans)
"""
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1)
class MultiLayeredConv1d(torch.nn.Module):
"""Multi-layered conv1d for Transformer block.
This is a module of multi-leyered conv1d designed to replace positionwise feed-forward network
in Transforner block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
Args:
in_chans (int): Number of input channels.
hidden_chans (int): Number of hidden channels.
kernel_size (int): Kernel size of conv1d.
dropout_rate (float): Dropout rate.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(
self, in_chans: int, hidden_chans: int, kernel_size=5, dropout_rate=0.0,
):
super(MultiLayeredConv1d, self).__init__()
self.w_1 = torch.nn.Conv1d(
in_chans,
hidden_chans,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
)
self.w_2 = torch.nn.Conv1d(
hidden_chans, in_chans, 1, stride=1, padding=(1 - 1) // 2
)
self.dropout = torch.nn.Dropout(dropout_rate)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Calculate forward propagation.
Args:
x (Tensor): Batch of input tensors (B, *, in_chans).
Returns:
Tensor: Batch of output tensors (B, *, hidden_chans)
"""
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1)
class Swish(torch.nn.Module):
"""
Construct an Swish activation function for Conformer.
"""
def forward(self, x):
"""
Return Swish activation function.
"""
return x * torch.sigmoid(x)
class ConvolutionModule(nn.Module):
"""
ConvolutionModule in Conformer model.
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernel size of conv layers.
"""
def __init__(self, channels, kernel_size, activation=Swish(), ignore_prefix_len=0, bias=True):
super(ConvolutionModule, self).__init__()
# kernel_size should be an odd number for 'SAME' padding
assert (kernel_size - 1) % 2 == 0
self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=bias, )
self.depthwise_conv = nn.Conv1d(channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=bias, )
self.norm = nn.GroupNorm(num_groups=32, num_channels=channels)
self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=bias, )
self.activation = activation
self.ignore_prefix_len = ignore_prefix_len
def forward(self, x):
"""
Compute convolution module.
Args:
x (torch.Tensor): Input tensor (#batch, time, channels).
Returns:
torch.Tensor: Output tensor (#batch, time, channels).
"""
# exchange the temporal dimension and the feature dimension
x = x.transpose(1, 2)
# GLU mechanism
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
# 1D Depthwise Conv
x_sub = self.depthwise_conv(x[..., self.ignore_prefix_len:])
x_sub = self.activation(self.norm(x_sub))
x_pre = x[..., :self.ignore_prefix_len]
# x = self.depthwise_conv(x)
# x = self.activation(self.norm(x))
x = torch.cat([x_pre, x_sub], dim=-1)
x = self.pointwise_conv2(x)
return x.transpose(1, 2)