Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
class MultiLayeredConv1d(torch.nn.Module): | |
"""Multi-layered conv1d for Transformer block. | |
This is a module of multi-layered conv1d designed to replace position-wise feed-forward network | |
in Transformer block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. | |
Args: | |
in_chans (int): Number of input channels. | |
hidden_chans (int): Number of hidden channels. | |
kernel_size (int): Kernel size of conv1d. | |
dropout_rate (float): Dropout rate. | |
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: | |
https://arxiv.org/pdf/1905.09263.pdf | |
""" | |
def __init__( | |
self, in_chans: int, hidden_chans: int, kernel_size: int, dropout_rate: float | |
): | |
super(MultiLayeredConv1d, self).__init__() | |
self.w_1 = torch.nn.Conv1d( | |
in_chans, | |
hidden_chans, | |
kernel_size, | |
stride=1, | |
padding=(kernel_size - 1) // 2, | |
) | |
self.w_2 = torch.nn.Conv1d( | |
hidden_chans, in_chans, 1, stride=1, padding=(1 - 1) // 2 | |
) | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Batch of input tensors (B, *, in_chans). | |
Returns: | |
Tensor: Batch of output tensors (B, *, hidden_chans) | |
""" | |
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) | |
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1) | |
class MultiLayeredConv1d(torch.nn.Module): | |
"""Multi-layered conv1d for Transformer block. | |
This is a module of multi-leyered conv1d designed to replace positionwise feed-forward network | |
in Transforner block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. | |
Args: | |
in_chans (int): Number of input channels. | |
hidden_chans (int): Number of hidden channels. | |
kernel_size (int): Kernel size of conv1d. | |
dropout_rate (float): Dropout rate. | |
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: | |
https://arxiv.org/pdf/1905.09263.pdf | |
""" | |
def __init__( | |
self, in_chans: int, hidden_chans: int, kernel_size=5, dropout_rate=0.0, | |
): | |
super(MultiLayeredConv1d, self).__init__() | |
self.w_1 = torch.nn.Conv1d( | |
in_chans, | |
hidden_chans, | |
kernel_size, | |
stride=1, | |
padding=(kernel_size - 1) // 2, | |
) | |
self.w_2 = torch.nn.Conv1d( | |
hidden_chans, in_chans, 1, stride=1, padding=(1 - 1) // 2 | |
) | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Batch of input tensors (B, *, in_chans). | |
Returns: | |
Tensor: Batch of output tensors (B, *, hidden_chans) | |
""" | |
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) | |
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1) | |
class Swish(torch.nn.Module): | |
""" | |
Construct an Swish activation function for Conformer. | |
""" | |
def forward(self, x): | |
""" | |
Return Swish activation function. | |
""" | |
return x * torch.sigmoid(x) | |
class ConvolutionModule(nn.Module): | |
""" | |
ConvolutionModule in Conformer model. | |
Args: | |
channels (int): The number of channels of conv layers. | |
kernel_size (int): Kernel size of conv layers. | |
""" | |
def __init__(self, channels, kernel_size, activation=Swish(), ignore_prefix_len=0, bias=True): | |
super(ConvolutionModule, self).__init__() | |
# kernel_size should be an odd number for 'SAME' padding | |
assert (kernel_size - 1) % 2 == 0 | |
self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=bias, ) | |
self.depthwise_conv = nn.Conv1d(channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=bias, ) | |
self.norm = nn.GroupNorm(num_groups=32, num_channels=channels) | |
self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=bias, ) | |
self.activation = activation | |
self.ignore_prefix_len = ignore_prefix_len | |
def forward(self, x): | |
""" | |
Compute convolution module. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, channels). | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, channels). | |
""" | |
# exchange the temporal dimension and the feature dimension | |
x = x.transpose(1, 2) | |
# GLU mechanism | |
x = self.pointwise_conv1(x) # (batch, 2*channel, dim) | |
x = nn.functional.glu(x, dim=1) # (batch, channel, dim) | |
# 1D Depthwise Conv | |
x_sub = self.depthwise_conv(x[..., self.ignore_prefix_len:]) | |
x_sub = self.activation(self.norm(x_sub)) | |
x_pre = x[..., :self.ignore_prefix_len] | |
# x = self.depthwise_conv(x) | |
# x = self.activation(self.norm(x)) | |
x = torch.cat([x_pre, x_sub], dim=-1) | |
x = self.pointwise_conv2(x) | |
return x.transpose(1, 2) |