from . import attentions from torch import nn import torch from torch.nn import functional as F class Mish(nn.Module): def __init__(self): super(Mish, self).__init__() def forward(self, x): return x * torch.tanh(F.softplus(x)) class Conv1dGLU(nn.Module): ''' Conv1d + GLU(Gated Linear Unit) with residual connection. For GLU refer to https://arxiv.org/abs/1612.08083 paper. ''' def __init__(self, in_channels, out_channels, kernel_size, dropout): super(Conv1dGLU, self).__init__() self.out_channels = out_channels self.conv1 = nn.Conv1d(in_channels, 2 * out_channels, kernel_size=kernel_size, padding=2) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.conv1(x) x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1) x = x1 * torch.sigmoid(x2) x = residual + self.dropout(x) return x class StyleEncoder(torch.nn.Module): def __init__(self, in_dim=513, hidden_dim=128, out_dim=256): super().__init__() self.in_dim = in_dim # Linear 513 wav2vec 2.0 1024 self.hidden_dim = hidden_dim self.out_dim = out_dim self.kernel_size = 5 self.n_head = 2 self.dropout = 0.1 self.spectral = nn.Sequential( nn.Conv1d(self.in_dim, self.hidden_dim, 1), Mish(), nn.Dropout(self.dropout), nn.Conv1d(self.hidden_dim, self.hidden_dim, 1), Mish(), nn.Dropout(self.dropout) ) self.temporal = nn.Sequential( Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout), Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout), ) self.slf_attn = attentions.MultiHeadAttention(self.hidden_dim, self.hidden_dim, self.n_head, p_dropout = self.dropout, proximal_bias= False, proximal_init=True) self.atten_drop = nn.Dropout(self.dropout) self.fc = nn.Conv1d(self.hidden_dim, self.out_dim, 1) def forward(self, x, mask=None): # spectral x = self.spectral(x)*mask # temporal x = self.temporal(x)*mask # self-attention attn_mask = mask.unsqueeze(2) * mask.unsqueeze(-1) y = self.slf_attn(x,x, attn_mask=attn_mask) x = x+ self.atten_drop(y) # fc x = self.fc(x) # temoral average pooling w = self.temporal_avg_pool(x, mask=mask) return w def temporal_avg_pool(self, x, mask=None): if mask is None: out = torch.mean(x, dim=2) else: len_ = mask.sum(dim=2) x = x.sum(dim=2) out = torch.div(x, len_) return out