import torch import torch.nn as nn class MultiLayeredConv1d(torch.nn.Module): """Multi-layered conv1d for Transformer block. This is a module of multi-layered conv1d designed to replace position-wise feed-forward network in Transformer block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. Args: in_chans (int): Number of input channels. hidden_chans (int): Number of hidden channels. kernel_size (int): Kernel size of conv1d. dropout_rate (float): Dropout rate. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf """ def __init__( self, in_chans: int, hidden_chans: int, kernel_size: int, dropout_rate: float ): super(MultiLayeredConv1d, self).__init__() self.w_1 = torch.nn.Conv1d( in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) self.w_2 = torch.nn.Conv1d( hidden_chans, in_chans, 1, stride=1, padding=(1 - 1) // 2 ) self.dropout = torch.nn.Dropout(dropout_rate) def forward(self, x: torch.Tensor) -> torch.Tensor: """Calculate forward propagation. Args: x (Tensor): Batch of input tensors (B, *, in_chans). Returns: Tensor: Batch of output tensors (B, *, hidden_chans) """ x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1) class MultiLayeredConv1d(torch.nn.Module): """Multi-layered conv1d for Transformer block. This is a module of multi-leyered conv1d designed to replace positionwise feed-forward network in Transforner block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. Args: in_chans (int): Number of input channels. hidden_chans (int): Number of hidden channels. kernel_size (int): Kernel size of conv1d. dropout_rate (float): Dropout rate. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf """ def __init__( self, in_chans: int, hidden_chans: int, kernel_size=5, dropout_rate=0.0, ): super(MultiLayeredConv1d, self).__init__() self.w_1 = torch.nn.Conv1d( in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ) self.w_2 = torch.nn.Conv1d( hidden_chans, in_chans, 1, stride=1, padding=(1 - 1) // 2 ) self.dropout = torch.nn.Dropout(dropout_rate) def forward(self, x: torch.Tensor) -> torch.Tensor: """Calculate forward propagation. Args: x (Tensor): Batch of input tensors (B, *, in_chans). Returns: Tensor: Batch of output tensors (B, *, hidden_chans) """ x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1) class Swish(torch.nn.Module): """ Construct an Swish activation function for Conformer. """ def forward(self, x): """ Return Swish activation function. """ return x * torch.sigmoid(x) class ConvolutionModule(nn.Module): """ ConvolutionModule in Conformer model. Args: channels (int): The number of channels of conv layers. kernel_size (int): Kernel size of conv layers. """ def __init__(self, channels, kernel_size, activation=Swish(), ignore_prefix_len=0, bias=True): super(ConvolutionModule, self).__init__() # kernel_size should be an odd number for 'SAME' padding assert (kernel_size - 1) % 2 == 0 self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=bias, ) self.depthwise_conv = nn.Conv1d(channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=bias, ) self.norm = nn.GroupNorm(num_groups=32, num_channels=channels) self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=bias, ) self.activation = activation self.ignore_prefix_len = ignore_prefix_len def forward(self, x): """ Compute convolution module. Args: x (torch.Tensor): Input tensor (#batch, time, channels). Returns: torch.Tensor: Output tensor (#batch, time, channels). """ # exchange the temporal dimension and the feature dimension x = x.transpose(1, 2) # GLU mechanism x = self.pointwise_conv1(x) # (batch, 2*channel, dim) x = nn.functional.glu(x, dim=1) # (batch, channel, dim) # 1D Depthwise Conv x_sub = self.depthwise_conv(x[..., self.ignore_prefix_len:]) x_sub = self.activation(self.norm(x_sub)) x_pre = x[..., :self.ignore_prefix_len] # x = self.depthwise_conv(x) # x = self.activation(self.norm(x)) x = torch.cat([x_pre, x_sub], dim=-1) x = self.pointwise_conv2(x) return x.transpose(1, 2)