# Copyright 2023 (authors: Feiteng Li) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch import torch.nn as nn class TokenEmbedding(nn.Module): def __init__( self, dim_model: int, vocab_size: int, dropout: float = 0.0, ): super().__init__() self.vocab_size = vocab_size self.dim_model = dim_model self.dropout = torch.nn.Dropout(p=dropout) self.word_embeddings = nn.Embedding(self.vocab_size, self.dim_model) @property def weight(self) -> torch.Tensor: return self.word_embeddings.weight def embedding(self, index: int) -> torch.Tensor: return self.word_embeddings.weight[index : index + 1] def forward(self, x: torch.Tensor): X = self.word_embeddings(x) X = self.dropout(X) return X class SinePositionalEmbedding(nn.Module): def __init__( self, dim_model: int, dropout: float = 0.0, scale: bool = False, alpha: bool = False, ): super().__init__() self.dim_model = dim_model self.x_scale = math.sqrt(dim_model) if scale else 1.0 self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha) self.dropout = torch.nn.Dropout(p=dropout) self.reverse = False self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, 4000)) def extend_pe(self, x): """Reset the positional encodings.""" if self.pe is not None: if self.pe.size(1) >= x.size(1): if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return pe = torch.zeros(x.size(1), self.dim_model) if self.reverse: position = torch.arange( x.size(1) - 1, -1, -1.0, dtype=torch.float32 ).unsqueeze(1) else: position = torch.arange( 0, x.size(1), dtype=torch.float32 ).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.dim_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.dim_model) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = pe.to(device=x.device, dtype=x.dtype).detach() def forward(self, x: torch.Tensor) -> torch.Tensor: self.extend_pe(x) output = x.unsqueeze(-1) if x.ndim == 2 else x output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)] return self.dropout(output) def infer(self, x, position_ids): """ infer only a single or a few tokens to save time """ output = x.unsqueeze(-1) if x.ndim == 2 else x output = output * self.x_scale + self.alpha * self.pe[:, position_ids] return self.dropout(output)