|
import torch |
|
import commons |
|
import models |
|
|
|
import math |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
import modules |
|
import attentions |
|
|
|
from torch.nn import Conv1d, ConvTranspose1d, Conv2d |
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm |
|
from commons import init_weights, get_padding |
|
|
|
class TextEncoder(nn.Module): |
|
def __init__(self, |
|
n_vocab, |
|
out_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
emotion_embedding): |
|
super().__init__() |
|
self.n_vocab = n_vocab |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.emotion_embedding = emotion_embedding |
|
|
|
if self.n_vocab!=0: |
|
self.emb = nn.Embedding(n_vocab, hidden_channels) |
|
if emotion_embedding: |
|
self.emo_proj = nn.Linear(1024, hidden_channels) |
|
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) |
|
|
|
self.encoder = attentions.Encoder( |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout) |
|
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward(self, x, x_lengths, emotion_embedding=None): |
|
if self.n_vocab!=0: |
|
x = self.emb(x) * math.sqrt(self.hidden_channels) |
|
if emotion_embedding is not None: |
|
print("emotion added") |
|
x = x + self.emo_proj(emotion_embedding.unsqueeze(1)) |
|
x = torch.transpose(x, 1, -1) |
|
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) |
|
|
|
x = self.encoder(x * x_mask, x_mask) |
|
stats = self.proj(x) * x_mask |
|
|
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
return x, m, logs, x_mask |
|
|
|
class PosteriorEncoder(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=0): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) |
|
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward(self, x, x_lengths, g=None): |
|
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) |
|
x = self.pre(x) * x_mask |
|
x = self.enc(x, x_mask, g=g) |
|
stats = self.proj(x) * x_mask |
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask |
|
return z, m, logs, x_mask |
|
|
|
class SynthesizerTrn(models.SynthesizerTrn): |
|
""" |
|
Synthesizer for Training |
|
""" |
|
|
|
def __init__(self, |
|
n_vocab, |
|
spec_channels, |
|
segment_size, |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
n_speakers=0, |
|
gin_channels=0, |
|
use_sdp=True, |
|
emotion_embedding=False, |
|
**kwargs): |
|
|
|
super().__init__( |
|
n_vocab, |
|
spec_channels, |
|
segment_size, |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
n_speakers=n_speakers, |
|
gin_channels=gin_channels, |
|
use_sdp=use_sdp, |
|
**kwargs |
|
) |
|
self.enc_p = TextEncoder(n_vocab, |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
emotion_embedding) |
|
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) |
|
|
|
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None, emotion_embedding=None): |
|
from ONNXVITS_utils import runonnx |
|
|
|
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, emotion_embedding) |
|
|
|
if self.n_speakers > 0: |
|
g = self.emb_g(sid).unsqueeze(-1) |
|
else: |
|
g = None |
|
|
|
|
|
logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy()) |
|
logw = torch.from_numpy(logw[0]) |
|
|
|
w = torch.exp(logw) * x_mask * length_scale |
|
w_ceil = torch.ceil(w) |
|
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() |
|
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) |
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) |
|
attn = commons.generate_path(w_ceil, attn_mask) |
|
|
|
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) |
|
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) |
|
|
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale |
|
|
|
|
|
z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy()) |
|
z = torch.from_numpy(z[0]) |
|
|
|
|
|
o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy()) |
|
o = torch.from_numpy(o[0]) |
|
|
|
return o, attn, y_mask, (z, z_p, m_p, logs_p) |
|
|
|
def predict_duration(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None, |
|
emotion_embedding=None): |
|
from ONNXVITS_utils import runonnx |
|
|
|
|
|
x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy()) |
|
x = torch.from_numpy(x) |
|
m_p = torch.from_numpy(m_p) |
|
logs_p = torch.from_numpy(logs_p) |
|
x_mask = torch.from_numpy(x_mask) |
|
|
|
if self.n_speakers > 0: |
|
g = self.emb_g(sid).unsqueeze(-1) |
|
else: |
|
g = None |
|
|
|
|
|
logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy()) |
|
logw = torch.from_numpy(logw[0]) |
|
|
|
w = torch.exp(logw) * x_mask * length_scale |
|
w_ceil = torch.ceil(w) |
|
return list(w_ceil.squeeze()) |
|
|
|
def infer_with_duration(self, x, x_lengths, w_ceil, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None, |
|
emotion_embedding=None): |
|
from ONNXVITS_utils import runonnx |
|
|
|
|
|
x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy()) |
|
x = torch.from_numpy(x) |
|
m_p = torch.from_numpy(m_p) |
|
logs_p = torch.from_numpy(logs_p) |
|
x_mask = torch.from_numpy(x_mask) |
|
|
|
if self.n_speakers > 0: |
|
g = self.emb_g(sid).unsqueeze(-1) |
|
else: |
|
g = None |
|
assert len(w_ceil) == x.shape[2] |
|
w_ceil = torch.FloatTensor(w_ceil).reshape(1, 1, -1) |
|
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() |
|
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) |
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) |
|
attn = commons.generate_path(w_ceil, attn_mask) |
|
|
|
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) |
|
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) |
|
|
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale |
|
|
|
|
|
z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy()) |
|
z = torch.from_numpy(z[0]) |
|
|
|
|
|
o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy()) |
|
o = torch.from_numpy(o[0]) |
|
|
|
return o, attn, y_mask, (z, z_p, m_p, logs_p) |
|
|
|
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt): |
|
from ONNXVITS_utils import runonnx |
|
assert self.n_speakers > 0, "n_speakers have to be larger than 0." |
|
g_src = self.emb_g(sid_src).unsqueeze(-1) |
|
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1) |
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src) |
|
|
|
z_p = runonnx("ONNX_net/flow.onnx", z_p=z.numpy(), y_mask=y_mask.numpy(), g=g_src.numpy()) |
|
z_p = torch.from_numpy(z_p[0]) |
|
|
|
z_hat = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g_tgt.numpy()) |
|
z_hat = torch.from_numpy(z_hat[0]) |
|
|
|
o_hat = runonnx("ONNX_net/dec.onnx", z_in=(z_hat * y_mask).numpy(), g=g_tgt.numpy()) |
|
o_hat = torch.from_numpy(o_hat[0]) |
|
return o_hat, y_mask, (z, z_p, z_hat) |