File size: 14,901 Bytes
a7fc05c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import os
import sys
import time
import torch
import librosa
import logging
import traceback
import numpy as np
import soundfile as sf
import noisereduce as nr
from scipy.io import wavfile
from audio_upscaler import upscale
now_dir = os.getcwd()
sys.path.append(now_dir)
from rvc.infer.pipeline import Pipeline as VC
from rvc.lib.utils import load_audio, load_embedding
from rvc.lib.tools.split_audio import process_audio, merge_audio
from rvc.lib.algorithm.synthesizers import Synthesizer
from rvc.configs.config import Config
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("httpcore").setLevel(logging.WARNING)
logging.getLogger("faiss").setLevel(logging.WARNING)
class VoiceConverter:
"""
A class for performing voice conversion using the Retrieval-Based Voice Conversion (RVC) method.
"""
def __init__(self):
"""
Initializes the VoiceConverter with default configuration, and sets up models and parameters.
"""
self.config = Config() # Load RVC configuration
self.hubert_model = (
None # Initialize the Hubert model (for embedding extraction)
)
self.tgt_sr = None # Target sampling rate for the output audio
self.net_g = None # Generator network for voice conversion
self.vc = None # Voice conversion pipeline instance
self.cpt = None # Checkpoint for loading model weights
self.version = None # Model version
self.n_spk = None # Number of speakers in the model
self.use_f0 = None # Whether the model uses F0
def load_hubert(self, embedder_model: str, embedder_model_custom: str = None):
"""
Loads the HuBERT model for speaker embedding extraction.
Args:
embedder_model (str): Path to the pre-trained HuBERT model.
embedder_model_custom (str): Path to the custom HuBERT model.
"""
models, _, _ = load_embedding(embedder_model, embedder_model_custom)
self.hubert_model = models[0].to(self.config.device)
self.hubert_model = (
self.hubert_model.half()
if self.config.is_half
else self.hubert_model.float()
)
self.hubert_model.eval()
@staticmethod
def remove_audio_noise(input_audio_path, reduction_strength=0.7):
"""
Removes noise from an audio file using the NoiseReduce library.
Args:
input_audio_path (str): Path to the input audio file.
reduction_strength (float): Strength of the noise reduction. Default is 0.7.
"""
try:
rate, data = wavfile.read(input_audio_path)
reduced_noise = nr.reduce_noise(
y=data, sr=rate, prop_decrease=reduction_strength
)
return reduced_noise
except Exception as error:
print(f"An error occurred removing audio noise: {error}")
return None
@staticmethod
def convert_audio_format(input_path, output_path, output_format):
"""
Converts an audio file to a specified output format.
Args:
input_path (str): Path to the input audio file.
output_path (str): Path to the output audio file.
output_format (str): Desired audio format (e.g., "WAV", "MP3").
"""
try:
if output_format != "WAV":
print(f"Converting audio to {output_format} format...")
audio, sample_rate = librosa.load(input_path, sr=None)
common_sample_rates = [
8000,
11025,
12000,
16000,
22050,
24000,
32000,
44100,
48000,
]
target_sr = min(common_sample_rates, key=lambda x: abs(x - sample_rate))
audio = librosa.resample(
audio, orig_sr=sample_rate, target_sr=target_sr
)
sf.write(output_path, audio, target_sr, format=output_format.lower())
return output_path
except Exception as error:
print(f"An error occurred converting the audio format: {error}")
def convert_audio(
self,
audio_input_path: str,
audio_output_path: str,
model_path: str,
index_path: str,
embedder_model: str,
pitch: int,
f0_file: str,
f0_method: str,
index_rate: float,
volume_envelope: int,
protect: float,
hop_length: int,
split_audio: bool,
f0_autotune: bool,
filter_radius: int,
embedder_model_custom: str,
clean_audio: bool,
clean_strength: float,
export_format: str,
upscale_audio: bool,
resample_sr: int = 0,
sid: int = 0,
):
"""
Performs voice conversion on the input audio.
Args:
audio_input_path (str): Path to the input audio file.
audio_output_path (str): Path to the output audio file.
model_path (str): Path to the voice conversion model.
index_path (str): Path to the index file.
sid (int, optional): Speaker ID. Default is 0.
pitch (str, optional): Key for F0 up-sampling. Default is None.
f0_file (str, optional): Path to the F0 file. Default is None.
f0_method (str, optional): Method for F0 extraction. Default is None.
index_rate (float, optional): Rate for index matching. Default is None.
resample_sr (int, optional): Resample sampling rate. Default is 0.
volume_envelope (float, optional): RMS mix rate. Default is None.
protect (float, optional): Protection rate for certain audio segments. Default is None.
hop_length (int, optional): Hop length for audio processing. Default is None.
split_audio (bool, optional): Whether to split the audio for processing. Default is False.
f0_autotune (bool, optional): Whether to use F0 autotune. Default is False.
filter_radius (int, optional): Radius for filtering. Default is None.
embedder_model (str, optional): Path to the embedder model. Default is None.
embedder_model_custom (str, optional): Path to the custom embedder model. Default is None.
clean_audio (bool, optional): Whether to clean the audio. Default is False.
clean_strength (float, optional): Strength of the audio cleaning. Default is 0.7.
export_format (str, optional): Format for exporting the audio. Default is "WAV".
upscale_audio (bool, optional): Whether to upscale the audio. Default is False.
"""
self.get_vc(model_path, sid)
try:
start_time = time.time()
print(f"Converting audio '{audio_input_path}'...")
if upscale_audio == True:
upscale(audio_input_path, audio_input_path)
audio = load_audio(audio_input_path, 16000)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
if not self.hubert_model:
self.load_hubert(embedder_model, embedder_model_custom)
file_index = (
index_path.strip()
.strip('"')
.strip("\n")
.strip('"')
.strip()
.replace("trained", "added")
)
if self.tgt_sr != resample_sr >= 16000:
self.tgt_sr = resample_sr
if split_audio:
result, new_dir_path = process_audio(audio_input_path)
if result == "Error":
return "Error with Split Audio", None
dir_path = (
new_dir_path.strip().strip('"').strip("\n").strip('"').strip()
)
if dir_path:
paths = [
os.path.join(root, name)
for root, _, files in os.walk(dir_path, topdown=False)
for name in files
if name.endswith(".wav") and root == dir_path
]
try:
for path in paths:
self.convert_audio(
audio_input_path=path,
audio_output_path=path,
model_path=model_path,
index_path=index_path,
sid=sid,
pitch=pitch,
f0_file=None,
f0_method=f0_method,
index_rate=index_rate,
resample_sr=resample_sr,
volume_envelope=volume_envelope,
protect=protect,
hop_length=hop_length,
split_audio=False,
f0_autotune=f0_autotune,
filter_radius=filter_radius,
export_format=export_format,
upscale_audio=upscale_audio,
embedder_model=embedder_model,
embedder_model_custom=embedder_model_custom,
clean_audio=clean_audio,
clean_strength=clean_strength,
)
except Exception as error:
print(f"An error occurred processing the segmented audio: {error}")
print(traceback.format_exc())
return f"Error {error}"
print("Finished processing segmented audio, now merging audio...")
merge_timestamps_file = os.path.join(
os.path.dirname(new_dir_path),
f"{os.path.basename(audio_input_path).split('.')[0]}_timestamps.txt",
)
self.tgt_sr, audio_opt = merge_audio(merge_timestamps_file)
os.remove(merge_timestamps_file)
else:
audio_opt = self.vc.pipeline(
model=self.hubert_model,
net_g=self.net_g,
sid=sid,
audio=audio,
input_audio_path=audio_input_path,
pitch=pitch,
f0_method=f0_method,
file_index=file_index,
index_rate=index_rate,
pitch_guidance=self.use_f0,
filter_radius=filter_radius,
tgt_sr=self.tgt_sr,
resample_sr=resample_sr,
volume_envelope=volume_envelope,
version=self.version,
protect=protect,
hop_length=hop_length,
f0_autotune=f0_autotune,
f0_file=f0_file,
)
if audio_output_path:
sf.write(audio_output_path, audio_opt, self.tgt_sr, format="WAV")
if clean_audio:
cleaned_audio = self.remove_audio_noise(
audio_output_path, clean_strength
)
if cleaned_audio is not None:
sf.write(
audio_output_path, cleaned_audio, self.tgt_sr, format="WAV"
)
output_path_format = audio_output_path.replace(
".wav", f".{export_format.lower()}"
)
audio_output_path = self.convert_audio_format(
audio_output_path, output_path_format, export_format
)
elapsed_time = time.time() - start_time
print(
f"Conversion completed at '{audio_output_path}' in {elapsed_time:.2f} seconds."
)
except Exception as error:
print(f"An error occurred during audio conversion: {error}")
print(traceback.format_exc())
def get_vc(self, weight_root, sid):
"""
Loads the voice conversion model and sets up the pipeline.
Args:
weight_root (str): Path to the model weights.
sid (int): Speaker ID.
"""
if sid == "" or sid == []:
self.cleanup_model()
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.load_model(weight_root)
if self.cpt is not None:
self.setup_network()
self.setup_vc_instance()
def cleanup_model(self):
"""
Cleans up the model and releases resources.
"""
if self.hubert_model is not None:
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr
self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
del self.net_g, self.cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.cpt = None
def load_model(self, weight_root):
"""
Loads the model weights from the specified path.
Args:
weight_root (str): Path to the model weights.
"""
self.cpt = (
torch.load(weight_root, map_location="cpu")
if os.path.isfile(weight_root)
else None
)
def setup_network(self):
"""
Sets up the network configuration based on the loaded checkpoint.
"""
if self.cpt is not None:
self.tgt_sr = self.cpt["config"][-1]
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]
self.use_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
self.text_enc_hidden_dim = 768 if self.version == "v2" else 256
self.net_g = Synthesizer(
*self.cpt["config"],
use_f0=self.use_f0,
text_enc_hidden_dim=self.text_enc_hidden_dim,
is_half=self.config.is_half,
)
del self.net_g.enc_q
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
self.net_g.eval().to(self.config.device)
self.net_g = (
self.net_g.half() if self.config.is_half else self.net_g.float()
)
def setup_vc_instance(self):
"""
Sets up the voice conversion pipeline instance based on the target sampling rate and configuration.
"""
if self.cpt is not None:
self.vc = VC(self.tgt_sr, self.config)
self.n_spk = self.cpt["config"][-3]
|