Spaces:
Potre1qw
/
Running on Zero

File size: 6,122 Bytes
932ae62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import nodes
import torch
import comfy.utils
import comfy.sd
import folder_paths
import comfy_extras.nodes_model_merging


class ImageOnlyCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE")
    FUNCTION = "load_checkpoint"

    CATEGORY = "loaders/video_models"

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (out[0], out[3], out[2])


class SVD_img2vid_Conditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "init_image": ("IMAGE",),
                              "vae": ("VAE",),
                              "width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
                              "video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}),
                              "motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}),
                              "fps": ("INT", {"default": 6, "min": 1, "max": 1024}),
                              "augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
    RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
    RETURN_NAMES = ("positive", "negative", "latent")

    FUNCTION = "encode"

    CATEGORY = "conditioning/video_models"

    def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level):
        output = clip_vision.encode_image(init_image)
        pooled = output.image_embeds.unsqueeze(0)
        pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
        encode_pixels = pixels[:,:,:,:3]
        if augmentation_level > 0:
            encode_pixels += torch.randn_like(pixels) * augmentation_level
        t = vae.encode(encode_pixels)
        positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]]
        negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]]
        latent = torch.zeros([video_frames, 4, height // 8, width // 8])
        return (positive, negative, {"samples":latent})

class VideoLinearCFGGuidance:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "sampling/video_models"

    def patch(self, model, min_cfg):
        def linear_cfg(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]

            scale = torch.linspace(min_cfg, cond_scale, cond.shape[0], device=cond.device).reshape((cond.shape[0], 1, 1, 1))
            return uncond + scale * (cond - uncond)

        m = model.clone()
        m.set_model_sampler_cfg_function(linear_cfg)
        return (m, )

class VideoTriangleCFGGuidance:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "sampling/video_models"

    def patch(self, model, min_cfg):
        def linear_cfg(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            period = 1.0
            values = torch.linspace(0, 1, cond.shape[0], device=cond.device)
            values = 2 * (values / period - torch.floor(values / period + 0.5)).abs()
            scale = (values * (cond_scale - min_cfg) + min_cfg).reshape((cond.shape[0], 1, 1, 1))

            return uncond + scale * (cond - uncond)

        m = model.clone()
        m.set_model_sampler_cfg_function(linear_cfg)
        return (m, )

class ImageOnlyCheckpointSave(comfy_extras.nodes_model_merging.CheckpointSave):
    CATEGORY = "_for_testing"

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip_vision": ("CLIP_VISION",),
                              "vae": ("VAE",),
                              "filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}

    def save(self, model, clip_vision, vae, filename_prefix, prompt=None, extra_pnginfo=None):
        comfy_extras.nodes_model_merging.save_checkpoint(model, clip_vision=clip_vision, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
        return {}

NODE_CLASS_MAPPINGS = {
    "ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader,
    "SVD_img2vid_Conditioning": SVD_img2vid_Conditioning,
    "VideoLinearCFGGuidance": VideoLinearCFGGuidance,
    "VideoTriangleCFGGuidance": VideoTriangleCFGGuidance,
    "ImageOnlyCheckpointSave": ImageOnlyCheckpointSave,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)",
}