Streamlit-GFPGAN / scripts /convert_gfpganv_to_clean.py
PrabhuKiranKonda's picture
Upload folder using huggingface_hub
7439e48
import argparse
import math
import torch
from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean
def modify_checkpoint(checkpoint_bilinear, checkpoint_clean):
for ori_k, ori_v in checkpoint_bilinear.items():
if 'stylegan_decoder' in ori_k:
if 'style_mlp' in ori_k: # style_mlp_layers
lr_mul = 0.01
prefix, name, idx, var = ori_k.split('.')
idx = (int(idx) * 2) - 1
crt_k = f'{prefix}.{name}.{idx}.{var}'
if var == 'weight':
_, c_in = ori_v.size()
scale = (1 / math.sqrt(c_in)) * lr_mul
crt_v = ori_v * scale * 2**0.5
else:
crt_v = ori_v * lr_mul * 2**0.5
checkpoint_clean[crt_k] = crt_v
elif 'modulation' in ori_k: # modulation in StyleConv
lr_mul = 1
crt_k = ori_k
var = ori_k.split('.')[-1]
if var == 'weight':
_, c_in = ori_v.size()
scale = (1 / math.sqrt(c_in)) * lr_mul
crt_v = ori_v * scale
else:
crt_v = ori_v * lr_mul
checkpoint_clean[crt_k] = crt_v
elif 'style_conv' in ori_k:
# StyleConv in style_conv1 and style_convs
if 'activate' in ori_k: # FusedLeakyReLU
# eg. style_conv1.activate.bias
# eg. style_convs.13.activate.bias
split_rlt = ori_k.split('.')
if len(split_rlt) == 4:
prefix, name, _, var = split_rlt
crt_k = f'{prefix}.{name}.{var}'
elif len(split_rlt) == 5:
prefix, name, idx, _, var = split_rlt
crt_k = f'{prefix}.{name}.{idx}.{var}'
crt_v = ori_v * 2**0.5 # 2**0.5 used in FusedLeakyReLU
c = crt_v.size(0)
checkpoint_clean[crt_k] = crt_v.view(1, c, 1, 1)
elif 'modulated_conv' in ori_k:
# eg. style_conv1.modulated_conv.weight
# eg. style_convs.13.modulated_conv.weight
_, c_out, c_in, k1, k2 = ori_v.size()
scale = 1 / math.sqrt(c_in * k1 * k2)
crt_k = ori_k
checkpoint_clean[crt_k] = ori_v * scale
elif 'weight' in ori_k:
crt_k = ori_k
checkpoint_clean[crt_k] = ori_v * 2**0.5
elif 'to_rgb' in ori_k: # StyleConv in to_rgb1 and to_rgbs
if 'modulated_conv' in ori_k:
# eg. to_rgb1.modulated_conv.weight
# eg. to_rgbs.5.modulated_conv.weight
_, c_out, c_in, k1, k2 = ori_v.size()
scale = 1 / math.sqrt(c_in * k1 * k2)
crt_k = ori_k
checkpoint_clean[crt_k] = ori_v * scale
else:
crt_k = ori_k
checkpoint_clean[crt_k] = ori_v
else:
crt_k = ori_k
checkpoint_clean[crt_k] = ori_v
# end of 'stylegan_decoder'
elif 'conv_body_first' in ori_k or 'final_conv' in ori_k:
# key name
name, _, var = ori_k.split('.')
crt_k = f'{name}.{var}'
# weight and bias
if var == 'weight':
c_out, c_in, k1, k2 = ori_v.size()
scale = 1 / math.sqrt(c_in * k1 * k2)
checkpoint_clean[crt_k] = ori_v * scale * 2**0.5
else:
checkpoint_clean[crt_k] = ori_v * 2**0.5
elif 'conv_body' in ori_k:
if 'conv_body_up' in ori_k:
ori_k = ori_k.replace('conv2.weight', 'conv2.1.weight')
ori_k = ori_k.replace('skip.weight', 'skip.1.weight')
name1, idx1, name2, _, var = ori_k.split('.')
crt_k = f'{name1}.{idx1}.{name2}.{var}'
if name2 == 'skip':
c_out, c_in, k1, k2 = ori_v.size()
scale = 1 / math.sqrt(c_in * k1 * k2)
checkpoint_clean[crt_k] = ori_v * scale / 2**0.5
else:
if var == 'weight':
c_out, c_in, k1, k2 = ori_v.size()
scale = 1 / math.sqrt(c_in * k1 * k2)
checkpoint_clean[crt_k] = ori_v * scale
else:
checkpoint_clean[crt_k] = ori_v
if 'conv1' in ori_k:
checkpoint_clean[crt_k] *= 2**0.5
elif 'toRGB' in ori_k:
crt_k = ori_k
if 'weight' in ori_k:
c_out, c_in, k1, k2 = ori_v.size()
scale = 1 / math.sqrt(c_in * k1 * k2)
checkpoint_clean[crt_k] = ori_v * scale
else:
checkpoint_clean[crt_k] = ori_v
elif 'final_linear' in ori_k:
crt_k = ori_k
if 'weight' in ori_k:
_, c_in = ori_v.size()
scale = 1 / math.sqrt(c_in)
checkpoint_clean[crt_k] = ori_v * scale
else:
checkpoint_clean[crt_k] = ori_v
elif 'condition' in ori_k:
crt_k = ori_k
if '0.weight' in ori_k:
c_out, c_in, k1, k2 = ori_v.size()
scale = 1 / math.sqrt(c_in * k1 * k2)
checkpoint_clean[crt_k] = ori_v * scale * 2**0.5
elif '0.bias' in ori_k:
checkpoint_clean[crt_k] = ori_v * 2**0.5
elif '2.weight' in ori_k:
c_out, c_in, k1, k2 = ori_v.size()
scale = 1 / math.sqrt(c_in * k1 * k2)
checkpoint_clean[crt_k] = ori_v * scale
elif '2.bias' in ori_k:
checkpoint_clean[crt_k] = ori_v
return checkpoint_clean
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ori_path', type=str, help='Path to the original model')
parser.add_argument('--narrow', type=float, default=1)
parser.add_argument('--channel_multiplier', type=float, default=2)
parser.add_argument('--save_path', type=str)
args = parser.parse_args()
ori_ckpt = torch.load(args.ori_path)['params_ema']
net = GFPGANv1Clean(
512,
num_style_feat=512,
channel_multiplier=args.channel_multiplier,
decoder_load_path=None,
fix_decoder=False,
# for stylegan decoder
num_mlp=8,
input_is_latent=True,
different_w=True,
narrow=args.narrow,
sft_half=True)
crt_ckpt = net.state_dict()
crt_ckpt = modify_checkpoint(ori_ckpt, crt_ckpt)
print(f'Save to {args.save_path}.')
torch.save(dict(params_ema=crt_ckpt), args.save_path, _use_new_zipfile_serialization=False)