Spaces:
Runtime error
Runtime error
Prgckwb
commited on
Commit
•
83bb2ae
1
Parent(s):
e6271d2
:tada: init
Browse files- .gitignore +8 -0
- app.py +81 -0
- requirements.txt +4 -0
.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Example user template template
|
2 |
+
### Example user template
|
3 |
+
|
4 |
+
# IntelliJ project files
|
5 |
+
.idea
|
6 |
+
*.iml
|
7 |
+
out
|
8 |
+
gen
|
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from diffusers.image_processor import VaeImageProcessor
|
7 |
+
from diffusers.schedulers import (
|
8 |
+
DDPMScheduler,
|
9 |
+
DDIMScheduler,
|
10 |
+
EulerAncestralDiscreteScheduler,
|
11 |
+
DPMSolverMultistepScheduler,
|
12 |
+
FlowMatchEulerDiscreteScheduler,
|
13 |
+
)
|
14 |
+
from diffusers.utils.torch_utils import randn_tensor
|
15 |
+
|
16 |
+
SCHEDULERS = {
|
17 |
+
"DDPMScheduler": DDPMScheduler,
|
18 |
+
"DDIMScheduler": DDIMScheduler,
|
19 |
+
"EulerAncestralDiscreteScheduler": EulerAncestralDiscreteScheduler,
|
20 |
+
"DPMSolverMultistepScheduler": DPMSolverMultistepScheduler,
|
21 |
+
"FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler,
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
def inference(
|
26 |
+
image_pil: Image.Image,
|
27 |
+
scheduler_name: str,
|
28 |
+
per_step_time: int = 1,
|
29 |
+
n_total_steps: int = 1000,
|
30 |
+
):
|
31 |
+
scheduler = SCHEDULERS[scheduler_name]()
|
32 |
+
scheduler.set_timesteps(num_inference_steps=n_total_steps)
|
33 |
+
timesteps = torch.flip(scheduler.timesteps, dims=[0])
|
34 |
+
|
35 |
+
image_processor = VaeImageProcessor()
|
36 |
+
image_tensor = image_processor.preprocess(image_pil)
|
37 |
+
|
38 |
+
# Fix seed
|
39 |
+
generator = torch.Generator().manual_seed(1117)
|
40 |
+
noise = randn_tensor(image_tensor.shape, generator)
|
41 |
+
|
42 |
+
for i, t in enumerate(timesteps):
|
43 |
+
noised_image_tensor = scheduler.add_noise(image_tensor, noise, timesteps=t)
|
44 |
+
noised_image_pil = image_processor.postprocess(noised_image_tensor)[0]
|
45 |
+
time.sleep(per_step_time)
|
46 |
+
|
47 |
+
# language=HTML
|
48 |
+
info_html = f"""
|
49 |
+
<div class="info-step">
|
50 |
+
<span class="step-number">Step {i + 1}</span> / {n_total_steps}
|
51 |
+
</div>
|
52 |
+
"""
|
53 |
+
|
54 |
+
yield noised_image_pil, info_html
|
55 |
+
|
56 |
+
|
57 |
+
if __name__ == '__main__':
|
58 |
+
demo = gr.Interface(
|
59 |
+
title='Noisescope',
|
60 |
+
description='',
|
61 |
+
fn=inference,
|
62 |
+
inputs=[
|
63 |
+
gr.Image(type='pil', label='Input Image'),
|
64 |
+
gr.Dropdown(list(SCHEDULERS.keys()), value='DDPMScheduler', label='Scheduler'),
|
65 |
+
gr.Radio(choices=[0, 1, 2], value=0, label='Per-Step time'),
|
66 |
+
gr.Radio(choices=[10, 25, 50, 100, 1000], value=50, label='Total Steps'),
|
67 |
+
],
|
68 |
+
outputs=[
|
69 |
+
gr.Image(type='pil', label='Noised Image'),
|
70 |
+
gr.HTML(label='Timestep Info'),
|
71 |
+
],
|
72 |
+
# language=css
|
73 |
+
css="""
|
74 |
+
body { font-family: Arial, sans-serif; background-color: #f0f0f5; }
|
75 |
+
h1 { color: #3c3c3c; }
|
76 |
+
.gradio-container { max-width: 800px; margin: auto; padding: 20px; background: white; border-radius: 10px; box-shadow: 0px 0px 15px rgba(0, 0, 0, 0.1); }
|
77 |
+
.info-step { padding: 10px; background: #3c3c3c; color: white; border-radius: 5px; margin-bottom: 10px; }
|
78 |
+
.step-number { font-weight: bold; color: #FFD700; }
|
79 |
+
"""
|
80 |
+
)
|
81 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers
|
2 |
+
transformers
|
3 |
+
accelerate
|
4 |
+
safetensors
|