File size: 7,775 Bytes
92bebf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import streamlit as st
import pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Pinecone, Chroma
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
import tiktoken
import random

# Hardcode the OpenAI API key
openai_api_key = "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" 

# Pinecone API key and environment
api_key = "58e247f3-041d-48ed-8466-61b39efa56a9"
environment = "gcp-starter"

# Initialize Pinecone
pinecone.init(api_key=api_key, environment=environment)

# Define the name of the Pinecone index
index_name = 'mi-resource-qa'

# Initialize the OpenAI embeddings object with the hardcoded API key
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)

# Define functions
def insert_or_fetch_embeddings(index_name):
    if index_name in pinecone.list_indexes():
        vector_store = Pinecone.from_existing_index(index_name, embeddings)
        return vector_store
    else:
        raise ValueError(f"Index {index_name} does not exist. Please create it before fetching.")

# Initialize or fetch Pinecone vector store
vector_store = insert_or_fetch_embeddings(index_name)

# Define the metadata for filtering
# metadata = {'source': '/Users/cheynelevesseur/Desktop/Python_Code/Projects/LLM/Intensifying Literacy Instruction - Essential Practices (NATIONAL).pdf'}

# calculate embedding cost using tiktoken
def calculate_embedding_cost(text):
    import tiktoken
    enc = tiktoken.encoding_for_model('text-embedding-ada-002')
    total_tokens = len(enc.encode(text))
    # print(f'Total Tokens: {total_tokens}')
    # print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}')
    return total_tokens, total_tokens / 1000 * 0.0004

def ask_with_memory(vector_store, query, chat_history=[]):
    from langchain.chains import ConversationalRetrievalChain
    from langchain.chat_models import ChatOpenAI
    
    llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=1, openai_api_key=openai_api_key)
    retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3})

    chain= ConversationalRetrievalChain.from_llm(llm, retriever)
    result = chain({'question': query, 'chat_history': st.session_state['history']})
    # Append to chat history as a dictionary
    st.session_state['history'].append((query, result['answer']))
    
    return (result['answer'])

# Initialize chat history
if 'history' not in st.session_state:
    st.session_state['history'] = []
    
# # STREAMLIT APPLICATION SETUP WITH PASSWORD

# Define the correct password
# correct_password = "MiBLSi"

#Add the image with a specified width
image_width = 300  # Set the desired width in pixels
st.image('/Users/cheynelevesseur/Desktop/Python_Code/Projects/LLM/Streamlit_Document_Reader_Simple/MTSS.ai_Logo.png', width=image_width)
st.subheader('Ink QA™ | Dynamic PDFs')

# Using Markdown for formatted text
st.markdown("""
Resource: **Intensifying Literacy Instruction: Essential Practices**
""", unsafe_allow_html=True)

with st.sidebar:
    # Password input field
    # password = st.text_input("Enter Password:", type="password")
    
    st.image('/Users/cheynelevesseur/Desktop/Python_Code/Projects/LLM/Streamlit_Document_Reader_Simple/mimtss.png', width=200)
    st.image('/Users/cheynelevesseur/Desktop/Python_Code/Projects/LLM/Streamlit_Document_Reader_Simple/Literacy_Cover.png', width=200)
    st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf")
        
    Audio_Header_text = """
    **Tune into Dr. St. Martin's introduction**"""
    st.markdown(Audio_Header_text)
        
    # Path or URL to the audio file
    audio_file_path = '/Users/cheynelevesseur/Desktop/Python_Code/Projects/LLM/Streamlit_Document_Reader_Simple/Audio_Introduction_Literacy.m4a'
    # Display the audio player widget
    st.audio(audio_file_path, format='audio/mp4', start_time=0)
        
    # Citation text with Markdown formatting
    citation_Content_text = """
    **Citation**  
    St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education.
        
    **Table of Contents**  
    * **Introduction**: pg. 1  
    * **Intensifying Literacy Instruction: Essential Practices**: pg. 4  
    * **Purpose**: pg. 4  
    * **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6
    * **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13
    * **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16
    * **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20
    * **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24
    * **Motivation and Engagement**: pg. 28
    * **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28
    * **Summary**: pg. 29
    * **Endnotes**: pg. 30
    * **Acknowledgment**: pg. 39
    """
    st.markdown(citation_Content_text)

# if password == correct_password:
# Define a list of possible placeholder texts
placeholders = [
    'Example: Summarize the article in 200 words or less',
    'Example: What are the essential practices?',
    'Example: I am a teacher, why is this resource important?',
    'Example: How can this resource support my instruction in reading and writing?',
    'Example: Does this resource align with the learning progression for developing skilled readers and writers?',
    'Example: How does this resource address the needs of students scoring below the 20th percentile?',
    'Example: Are there assessment tools included in this resource to monitor student progress?',
    'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?',
    "Example: How can this resource be used to support students' social-emotional development?",
    "Example: How does this resource align with the district's literacy goals and objectives?",
    'Example: What research and evidence support the effectiveness of this resource?',
    'Example: Does this resource provide guidance on implementation fidelity'
]

# Select a random placeholder from the list
if 'placeholder' not in st.session_state:
    st.session_state.placeholder = random.choice(placeholders)
    
q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder)
# q = st.text_input(label='Ask a question or make a request ', value='')

k = 3  # Set k to 3

# # Initialize chat history if not present
# if 'history' not in st.session_state:
#     st.session_state.history = []
    
if q:
    with st.spinner('Thinking...'):
        answer = ask_with_memory(vector_store, q, st.session_state.history)
    
    # Display the response in a text area
    st.text_area('Response: ', value=answer, height=400, key="response_text_area")
    
    st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.')

    # # Prepare chat history text for display
    # history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history)
    # Prepare chat history text for display in reverse order
    history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history))

    # Display chat history
    st.text_area('Chat History', value=history_text, height=800)