Spaces:
Sleeping
Sleeping
File size: 11,043 Bytes
e881d3d 9b6561b e881d3d 9b6561b e881d3d 5565914 e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 53c781f e881d3d 53c781f e881d3d 9b6561b 53c781f 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b e881d3d 9b6561b b951a7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
from crewai import Task, Agent, Crew, Process
from langchain.tools import tool, Tool
import re
import os
from langchain_groq import ChatGroq
# llm = ChatGroq(model='mixtral-8x7b-32768', temperature=0.6, max_tokens=2048)
llm = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=1024, api_key='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')
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_core.pydantic_v1 import BaseModel, Field
import requests
# import pyttsx3
import io
import tempfile
from gtts import gTTS
from pydub import AudioSegment
from groq import Groq
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip
def process_script(script):
"""Used to process the script into dictionary format"""
dict = {}
text_for_image_generation = re.findall(r'<image>(.*?)</?image>', script, re.DOTALL)
text_for_speech_generation = re.findall(r'<narration>(.*?)</?narration>', script, re.DOTALL)
dict['text_for_image_generation'] = text_for_image_generation
dict['text_for_speech_generation'] = text_for_speech_generation
return dict
@tool
def image_generator(script):
"""Generates images for the given script.
Saves it to images_dir and return path
Args:
script: a complete script containing narrations and image descriptions
Returns:
A list of images in bytes format.
"""
# images_dir = './outputs/images'
# for filename in os.listdir(images_dir):
# file_path = os.path.join(images_dir, filename)
# if os.path.isfile(file_path):
# os.remove(file_path)
dict = process_script(script)
images_list = []
for i, text in enumerate(dict['text_for_image_generation']):
response = requests.post(
f"https://api.stability.ai/v2beta/stable-image/generate/core",
headers={
"authorization": f'sk-2h9CmjC33uxc9W8fmx23oIicgqHk2jVtBF9KoEfdyTUIfODt',
"accept": "image/*"
},
files={"none": ''},
data={
"prompt": text,
"output_format": "png",
'aspect_ratio': "9:16",
},
)
print('image generated')
if response.status_code == 200:
images_list.append(response.content)
else:
raise Exception(str(response.json()))
return images_list
@tool
def generate_speech(script, lang='en', speed=1.2, max_segments=2):
"""
Generates speech for the given script using gTTS and adjusts the speed.
Args:
script (str): The script containing narration segments.
lang (str, optional): The language code (default is 'en' for English).
speed (float, optional): The speed factor of speech generation (default is 1.0).
max_segments (int, optional): Maximum number of speech segments to generate (default is 2).
Returns:
list: List of generated speech segments as bytes.
"""
dict = process_script(script)
speeches_list = []
# Ensure we limit the number of segments processed
segments_to_process = min(max_segments, len(dict['text_for_speech_generation']))
for text in dict['text_for_speech_generation'][:segments_to_process]:
# Generate speech
tts = gTTS(text=text, lang=lang)
# Save speech to BytesIO
speech_data = io.BytesIO()
tts.write_to_fp(speech_data)
speech_data.seek(0)
# Adjust speed if necessary
if speed != 1.0:
audio_segment = AudioSegment.from_file(speech_data, format="mp3")
audio_segment = audio_segment.speedup(playback_speed=speed)
speech_data = io.BytesIO()
audio_segment.export(speech_data, format="mp3")
speech_data.seek(0)
speeches_list.append(speech_data.read())
return speeches_list
def split_text_into_chunks(text, chunk_size):
words = text.split()
return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
def add_text_to_video(input_video, output_video, text, duration=1, fontsize=40, fontcolor=(255, 255, 255),
outline_thickness=2, outline_color=(0, 0, 0), delay_between_chunks=0.1,
font_path=os.path.join(os.path.dirname(os.path.abspath(__name__)),'Montserrat-Bold.ttf')):
chunks = split_text_into_chunks(text, 3) # Adjust chunk size as needed
cap = cv2.VideoCapture(input_video)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter(output_video, fourcc, fps, (width, height))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
chunk_duration_frames = duration * fps
delay_frames = int(delay_between_chunks * fps)
font = ImageFont.truetype(font_path, fontsize)
current_frame = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(frame_pil)
chunk_index = current_frame // (chunk_duration_frames + delay_frames)
if current_frame % (chunk_duration_frames + delay_frames) < chunk_duration_frames and chunk_index < len(chunks):
chunk = chunks[chunk_index]
text_bbox = draw.textbbox((0, 0), chunk, font=font)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
text_x = (width - text_width) // 2
text_y = height - 400 # Position text at the bottom
if text_width > width:
words = chunk.split()
half = len(words) // 2
line1 = ' '.join(words[:half])
line2 = ' '.join(words[half:])
text_size_line1 = draw.textsize(line1, font=font)
text_size_line2 = draw.textsize(line2, font=font)
text_x_line1 = (width - text_size_line1[0]) // 2
text_x_line2 = (width - text_size_line2[0]) // 2
text_y = height - 250 - text_size_line1[1] # Adjust vertical position for two lines
for dx in range(-outline_thickness, outline_thickness + 1):
for dy in range(-outline_thickness, outline_thickness + 1):
if dx != 0 or dy != 0:
draw.text((text_x_line1 + dx, text_y + dy), line1, font=font, fill=outline_color)
draw.text((text_x_line2 + dx, text_y + text_size_line1[1] + dy), line2, font=font, fill=outline_color)
draw.text((text_x_line1, text_y), line1, font=font, fill=fontcolor)
draw.text((text_x_line2, text_y + text_size_line1[1]), line2, font=font, fill=fontcolor)
else:
for dx in range(-outline_thickness, outline_thickness + 1):
for dy in range(-outline_thickness, outline_thickness + 1):
if dx != 0 or dy != 0:
draw.text((text_x + dx, text_y + dy), chunk, font=font, fill=outline_color)
draw.text((text_x, text_y), chunk, font=font, fill=fontcolor)
frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR)
out.write(frame)
current_frame += 1
cap.release()
out.release()
cv2.destroyAllWindows()
def apply_zoom_in_effect(clip, zoom_factor=1.2):
width, height = clip.size
duration = clip.duration
def zoom_in_effect(get_frame, t):
frame = get_frame(t)
zoom = 1 + (zoom_factor - 1) * (t / duration)
new_width, new_height = int(width * zoom), int(height * zoom)
resized_frame = cv2.resize(frame, (new_width, new_height))
x_start = (new_width - width) // 2
y_start = (new_height - height) // 2
cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width]
return cropped_frame
return clip.fl(zoom_in_effect, apply_to=['mask'])
@tool
def create_video_from_images_and_audio(images, speeches, zoom_factor=1.2):
"""Creates video using images and audios.
Args:
images: list of images in bytes format
speeches: list of speeches in bytes format"""
clips = []
temp_files = []
for i in range(min(len(images), len(speeches))):
# Save image to a temporary file
img_path = f"./temp_image_{i}.png"
with open(img_path, 'wb') as img_file:
img_file.write(images[i])
# Create an ImageClip
img_clip = ImageClip(img_path)
# Save audio to a temporary file
audio_path = f"./temp_audio_{i}.mp3"
with open(audio_path, 'wb') as audio_file:
audio_file.write(speeches[i])
# Create an AudioClip
audioclip = AudioFileClip(audio_path)
# Set the duration of the video clip to match the audio duration
videoclip = img_clip.set_duration(audioclip.duration)
zoomed_clip = apply_zoom_in_effect(videoclip, zoom_factor)
# Generate captions using the text for speech generation
caption = process_script(script)['text_for_speech_generation'][i]
temp_video_path = f"./temp_zoomed_{i}.mp4"
zoomed_clip.write_videofile(temp_video_path, codec='libx264', fps=24)
temp_files.append(temp_video_path)
final_video_path = f"./temp_captioned_{i}.mp4"
add_text_to_video(temp_video_path, final_video_path, caption, duration=1, fontsize=60)
temp_files.append(final_video_path)
final_clip = VideoFileClip(final_video_path)
final_clip = final_clip.set_audio(audioclip)
clips.append(final_clip)
final_clip = concatenate_videoclips(clips)
final_clip.write_videofile("./final_video.mp4", codec='libx264', fps=24)
# Close all video files properly
for clip in clips:
clip.close()
# Remove all temporary files
# for temp_file in temp_files:
# try:
# os.remove(temp_file)
# except Exception as e:
# print(f"Error removing file {temp_file}: {e}")
return "./final_video.mp4"
class WikiInputs(BaseModel):
"""Inputs to the wikipedia tool."""
query: str = Field(description="query to look up in Wikipedia, should be 3 or less words")
api_wrapper = WikipediaAPIWrapper(top_k_results=3)#, doc_content_chars_max=100)
wiki_tool = WikipediaQueryRun(
name="wiki-tool",
description="{query:'input here'}",
args_schema=WikiInputs,
api_wrapper=api_wrapper,
return_direct=True,
)
wiki = Tool(
name = 'wikipedia',
func = wiki_tool.run,
description= "{query:'input here'}"
)
|