File size: 11,043 Bytes
e881d3d
9b6561b
 
 
 
e881d3d
 
9b6561b
 
e881d3d
 
 
 
 
5565914
 
e881d3d
 
 
 
 
9b6561b
e881d3d
 
 
 
 
 
 
 
9b6561b
e881d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
9b6561b
e881d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b6561b
e881d3d
 
 
 
53c781f
e881d3d
53c781f
e881d3d
 
9b6561b
53c781f
9b6561b
e881d3d
 
 
 
 
9b6561b
e881d3d
 
 
 
 
9b6561b
e881d3d
 
9b6561b
e881d3d
 
 
9b6561b
e881d3d
 
 
 
 
 
 
 
 
 
 
 
9b6561b
e881d3d
 
 
9b6561b
 
 
 
 
 
 
e881d3d
9b6561b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e881d3d
 
9b6561b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e881d3d
 
9b6561b
 
e881d3d
 
 
9b6561b
 
 
e881d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b6561b
 
 
e881d3d
 
9b6561b
e881d3d
9b6561b
 
 
e881d3d
9b6561b
 
 
 
 
 
 
 
 
e881d3d
9b6561b
 
 
 
 
 
e881d3d
 
 
 
 
9b6561b
b951a7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from crewai import Task, Agent, Crew, Process
from langchain.tools import tool, Tool
import re
import os
from langchain_groq import ChatGroq
# llm = ChatGroq(model='mixtral-8x7b-32768', temperature=0.6, max_tokens=2048)
llm = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=1024, api_key='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')
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_core.pydantic_v1 import BaseModel, Field
import requests
# import pyttsx3
import io
import tempfile
from gtts import gTTS
from pydub import AudioSegment
from groq import Groq
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip

def process_script(script):
    """Used to process the script into dictionary format"""
    dict = {}
    text_for_image_generation = re.findall(r'<image>(.*?)</?image>', script, re.DOTALL)
    text_for_speech_generation = re.findall(r'<narration>(.*?)</?narration>', script, re.DOTALL)
    dict['text_for_image_generation'] = text_for_image_generation
    dict['text_for_speech_generation'] = text_for_speech_generation
    return dict

@tool
def image_generator(script):
    """Generates images for the given script.
    Saves it to images_dir and return path
    Args:
    script: a complete script containing narrations and image descriptions
    Returns:
    A list of images in bytes format.
    """
    # images_dir = './outputs/images'
    # for filename in os.listdir(images_dir):
    #     file_path = os.path.join(images_dir, filename)
    #     if os.path.isfile(file_path):
    #         os.remove(file_path)

    dict = process_script(script)
    images_list = []    
    for i, text in enumerate(dict['text_for_image_generation']):
      response = requests.post(
        f"https://api.stability.ai/v2beta/stable-image/generate/core",
        headers={
            "authorization": f'sk-2h9CmjC33uxc9W8fmx23oIicgqHk2jVtBF9KoEfdyTUIfODt',
            "accept": "image/*"
        },
        files={"none": ''},
        data={
            "prompt": text,
            "output_format": "png",
            'aspect_ratio': "9:16",
        },
        )
      print('image generated')

      if response.status_code == 200:
        images_list.append(response.content)
      else:
        raise Exception(str(response.json()))
    
    return images_list

@tool
def generate_speech(script, lang='en', speed=1.2, max_segments=2):
    """
    Generates speech for the given script using gTTS and adjusts the speed.

    Args:
        script (str): The script containing narration segments.
        lang (str, optional): The language code (default is 'en' for English).
        speed (float, optional): The speed factor of speech generation (default is 1.0).
        max_segments (int, optional): Maximum number of speech segments to generate (default is 2).

    Returns:
        list: List of generated speech segments as bytes.
    """
    dict = process_script(script)
    speeches_list = []
    
    # Ensure we limit the number of segments processed
    segments_to_process = min(max_segments, len(dict['text_for_speech_generation']))
    
    for text in dict['text_for_speech_generation'][:segments_to_process]:
        # Generate speech
        tts = gTTS(text=text, lang=lang)
        
        # Save speech to BytesIO
        speech_data = io.BytesIO()
        tts.write_to_fp(speech_data)
        speech_data.seek(0)

        # Adjust speed if necessary
        if speed != 1.0:
            audio_segment = AudioSegment.from_file(speech_data, format="mp3")
            audio_segment = audio_segment.speedup(playback_speed=speed)
            speech_data = io.BytesIO()
            audio_segment.export(speech_data, format="mp3")
            speech_data.seek(0)
        
        speeches_list.append(speech_data.read())
    
    return speeches_list

def split_text_into_chunks(text, chunk_size):
    words = text.split()
    return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]

def add_text_to_video(input_video, output_video, text, duration=1, fontsize=40, fontcolor=(255, 255, 255),
                      outline_thickness=2, outline_color=(0, 0, 0), delay_between_chunks=0.1,
                      font_path=os.path.join(os.path.dirname(os.path.abspath(__name__)),'Montserrat-Bold.ttf')):
    
    chunks = split_text_into_chunks(text, 3)  # Adjust chunk size as needed

    cap = cv2.VideoCapture(input_video)
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    out = cv2.VideoWriter(output_video, fourcc, fps, (width, height))

    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    chunk_duration_frames = duration * fps
    delay_frames = int(delay_between_chunks * fps)

    font = ImageFont.truetype(font_path, fontsize)

    current_frame = 0

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        draw = ImageDraw.Draw(frame_pil)

        chunk_index = current_frame // (chunk_duration_frames + delay_frames)

        if current_frame % (chunk_duration_frames + delay_frames) < chunk_duration_frames and chunk_index < len(chunks):
            chunk = chunks[chunk_index]
            text_bbox = draw.textbbox((0, 0), chunk, font=font)
            text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
            text_x = (width - text_width) // 2
            text_y = height - 400  # Position text at the bottom

            if text_width > width:
                words = chunk.split()
                half = len(words) // 2
                line1 = ' '.join(words[:half])
                line2 = ' '.join(words[half:])

                text_size_line1 = draw.textsize(line1, font=font)
                text_size_line2 = draw.textsize(line2, font=font)
                text_x_line1 = (width - text_size_line1[0]) // 2
                text_x_line2 = (width - text_size_line2[0]) // 2
                text_y = height - 250 - text_size_line1[1]  # Adjust vertical position for two lines

                for dx in range(-outline_thickness, outline_thickness + 1):
                    for dy in range(-outline_thickness, outline_thickness + 1):
                        if dx != 0 or dy != 0:
                            draw.text((text_x_line1 + dx, text_y + dy), line1, font=font, fill=outline_color)
                            draw.text((text_x_line2 + dx, text_y + text_size_line1[1] + dy), line2, font=font, fill=outline_color)
                
                draw.text((text_x_line1, text_y), line1, font=font, fill=fontcolor)
                draw.text((text_x_line2, text_y + text_size_line1[1]), line2, font=font, fill=fontcolor)

            else:
                for dx in range(-outline_thickness, outline_thickness + 1):
                    for dy in range(-outline_thickness, outline_thickness + 1):
                        if dx != 0 or dy != 0:
                            draw.text((text_x + dx, text_y + dy), chunk, font=font, fill=outline_color)
                
                draw.text((text_x, text_y), chunk, font=font, fill=fontcolor)

            frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR)

        out.write(frame)
        current_frame += 1

    cap.release()
    out.release()
    cv2.destroyAllWindows()

def apply_zoom_in_effect(clip, zoom_factor=1.2):
    width, height = clip.size
    duration = clip.duration

    def zoom_in_effect(get_frame, t):
        frame = get_frame(t)
        zoom = 1 + (zoom_factor - 1) * (t / duration)
        new_width, new_height = int(width * zoom), int(height * zoom)
        resized_frame = cv2.resize(frame, (new_width, new_height))
        
        x_start = (new_width - width) // 2
        y_start = (new_height - height) // 2
        cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width]
        
        return cropped_frame

    return clip.fl(zoom_in_effect, apply_to=['mask'])

@tool
def create_video_from_images_and_audio(images, speeches, zoom_factor=1.2):
    """Creates video using images and audios.
    Args:
    images: list of images in bytes format
    speeches: list of speeches in bytes format"""
    
    clips = []
    temp_files = []
    
    for i in range(min(len(images), len(speeches))):
        # Save image to a temporary file
        img_path = f"./temp_image_{i}.png"
        with open(img_path, 'wb') as img_file:
            img_file.write(images[i])
        
        # Create an ImageClip
        img_clip = ImageClip(img_path)
        
        # Save audio to a temporary file
        audio_path = f"./temp_audio_{i}.mp3"
        with open(audio_path, 'wb') as audio_file:
            audio_file.write(speeches[i])
        
        # Create an AudioClip
        audioclip = AudioFileClip(audio_path)
        
        # Set the duration of the video clip to match the audio duration
        videoclip = img_clip.set_duration(audioclip.duration)
        zoomed_clip = apply_zoom_in_effect(videoclip, zoom_factor)
        
        # Generate captions using the text for speech generation
        caption = process_script(script)['text_for_speech_generation'][i]
        
        temp_video_path = f"./temp_zoomed_{i}.mp4"
        zoomed_clip.write_videofile(temp_video_path, codec='libx264', fps=24)
        temp_files.append(temp_video_path)
        
        final_video_path = f"./temp_captioned_{i}.mp4"
        add_text_to_video(temp_video_path, final_video_path, caption, duration=1, fontsize=60)
        temp_files.append(final_video_path)
        
        final_clip = VideoFileClip(final_video_path)
        final_clip = final_clip.set_audio(audioclip)
        
        clips.append(final_clip)
    
    final_clip = concatenate_videoclips(clips)
    final_clip.write_videofile("./final_video.mp4", codec='libx264', fps=24)
    
    # Close all video files properly
    for clip in clips:
        clip.close()
        
    # Remove all temporary files
    # for temp_file in temp_files:
    #     try:
    #         os.remove(temp_file)
    #     except Exception as e:
    #         print(f"Error removing file {temp_file}: {e}")
    
    return "./final_video.mp4"

class WikiInputs(BaseModel):
    """Inputs to the wikipedia tool."""
    query: str = Field(description="query to look up in Wikipedia, should be 3 or less words")

api_wrapper = WikipediaAPIWrapper(top_k_results=3)#, doc_content_chars_max=100)

wiki_tool = WikipediaQueryRun(
    name="wiki-tool",
    description="{query:'input here'}",
    args_schema=WikiInputs,
    api_wrapper=api_wrapper,
    return_direct=True,
)

wiki = Tool(
    name = 'wikipedia',
    func = wiki_tool.run,
    description= "{query:'input here'}"
)