File size: 18,051 Bytes
9b6561b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b9173c
9b6561b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b9173c
1fda911
 
d4d52a2
9b6561b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d52a2
9b6561b
 
 
 
 
 
 
 
 
 
 
068543b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from langchain.tools import tool, Tool
import re
import os
from langchain_groq import ChatGroq
import requests
import cv2
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips
from langchain.pydantic_v1 import BaseModel, Field
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper

# from diffusers import StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
# import bitsandbytes as bnb
# import torch.nn as nn
# import torch
import pyttsx3
# from agents import get_agents_and_tasks
# from langchain_google_genai import ChatGoogleGenerativeAI

# from langchain.chat_models import ChatOpenAI
# # llm2 = ChatOpenAI(model='gpt-3.5-turbo')
# # llm3 = ChatOpenAI(model='gpt-3.5-turbo')
# llm1 = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=2048)
# # llm2 = ChatGroq(model='mixtral-8x7b-32768', temperature=0.6, max_tokens=2048, api_key='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')
# llm2 = ChatGoogleGenerativeAI(model='gemini-pro', temperature=0.0)
# # llm2 = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=2048, api_key='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')
# # llm3 = ChatGoogleGenerativeAI(model='gemini-pro')
# llm4 = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=2048, api_key='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')
# groq_api_key=os.environ.get('GROQ_API_KEY')
# llm = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=1024, api_key=groq_api_key)

# pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", torch_dtype=torch.float16).to('cuda')
# pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")

# def quantize_model_to_4bit(model):
#     replacements = []

#     # Collect layers to be replaced
#     for name, module in model.named_modules():
#         if isinstance(module, nn.Linear):
#             replacements.append((name, module))

#     # Replace layers
#     for name, module in replacements:
#         # Split the name to navigate to the parent module
#         *path, last = name.split('.')
#         parent = model
#         for part in path:
#             parent = getattr(parent, part)

#         # Create and assign the quantized layer
#         quantized_layer = bnb.nn.Linear4bit(module.in_features, module.out_features, bias=module.bias is not None)
#         quantized_layer.weight.data = module.weight.data
#         if module.bias is not None:
#             quantized_layer.bias.data = module.bias.data
#         setattr(parent, last, quantized_layer)

#     return model

# pipe.unet = quantize_model_to_4bit(pipe.unet)
# pipe.enable_model_cpu_offload()


def generate_speech(text, speech_dir='./outputs/audio', lang='en', speed=170, voice='default', num=0):
    """
    Generates speech for given script.
    """
    engine = pyttsx3.init()
    
    # Set language and voice
    voices = engine.getProperty('voices')
    if voice == 'default':
        voice_id = voices[1].id
    else:
        # Try to find the voice with the given name
        voice_id = None
        for v in voices:
            if voice in v.name:
                voice_id = v.id
                break
        if not voice_id:
            raise ValueError(f"Voice '{voice}' not found.")
    
    engine.setProperty('voice', voice_id)
    engine.setProperty('rate', speed)
    # os.remove(os.path.join(os.path.dirname(os.path.abspath(__file__)), speech_dir, f'speech_{num}.mp3')) if os.path.exists(os.path.join(speech_dir, f'speech_{num}.mp3')) else None
    engine.save_to_file(text, os.path.join(os.path.dirname(os.path.abspath(__file__)), speech_dir, f'speech_{num}.mp3'))
    engine.runAndWait()

# class VideoGeneration(BaseModel):
#     images_dir : str = Field(description='Path to images directory, such as "outputs/images"')
#     speeches_dir : str = Field(description='Path to speeches directory, such as "outputs/speeches"')

# @tool(args_schema=VideoGeneration)
# def create_video_from_images_and_audio(images_dir, speeches_dir, zoom_factor=1.2):
#     """Creates video using images and audios with zoom-in effect"""
#     images_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), images_dir)
#     speeches_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), speeches_dir)

#     images_paths = os.listdir(images_dir)
#     audio_paths = os.listdir(speeches_dir)
#     # print(images_paths, audio_paths)
#     clips = []
    
#     for i in range(min(len(images_paths), len(audio_paths))):
#         # Load the image
#         img_clip = ImageClip(os.path.join(images_dir, images_paths[i]))
        
#         # Load the audio file
#         audioclip = AudioFileClip(os.path.join(speeches_dir, audio_paths[i]))
        
#         # Set the duration of the video clip to the duration of the audio file
#         videoclip = img_clip.set_duration(audioclip.duration)
        
#         # Apply zoom-in effect to the video clip
#         zoomed_clip = apply_zoom_in_effect(videoclip, zoom_factor)
        
#         # Add audio to the zoomed video clip
#         zoomed_clip = zoomed_clip.set_audio(audioclip)
        
#         clips.append(zoomed_clip)
    
#     # Concatenate all video clips
#     final_clip = concatenate_videoclips(clips)
    
#     # Write the result to a file
#     final_clip.write_videofile(os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs/final_video/final_video.mp4"), codec='libx264', fps=24)
    
#     return os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs/final_video/final_video.mp4")

# def apply_zoom_in_effect(clip, zoom_factor=1.2):
#     width, height = clip.size
#     duration = clip.duration

#     def zoom_in_effect(get_frame, t):
#         frame = get_frame(t)
#         zoom = 1 + (zoom_factor - 1) * (t / duration)
#         new_width, new_height = int(width * zoom), int(height * zoom)
#         resized_frame = cv2.resize(frame, (new_width, new_height))
        
#         # Calculate the position to crop the frame to the original size
#         x_start = (new_width - width) // 2
#         y_start = (new_height - height) // 2
#         cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width]
        
#         return cropped_frame

#     return clip.fl(zoom_in_effect, apply_to=['mask'])

# Example usage
# image_paths = "outputs/images"
# audio_paths = "outputs/audio"

# video_path = create_video_from_images_and_audio(image_paths, audio_paths)
# print(f"Video created at: {video_path}")


# class ImageGeneration(BaseModel):
#     text : str = Field(description='description of sentence used for image generation')
#     num : int = Field(description='sequence of description passed this tool. Used in image saving path. Example 1,2,3,4,5 and so on')

# class SpeechGeneration(BaseModel):
#     text : str = Field(description='description of sentence used for image generation')
#     num : int = Field(description='sequence of description passed this tool. Used in image saving path. Example 1,2,3,4,5 and so on')

import os
import cv2
from moviepy.editor import ImageClip, AudioFileClip, concatenate_videoclips, VideoFileClip
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from groq import Groq



class VideoGeneration(BaseModel):
    images_dir: str = Field(description='Path to images directory, such as "outputs/images"')
    speeches_dir: str = Field(description='Path to speeches directory, such as "outputs/speeches"')

def split_text_into_chunks(text, chunk_size):
    words = text.split()
    return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]

def add_text_to_video(input_video, output_video, text, duration=1, fontsize=40, fontcolor=(255, 255, 255),
                      outline_thickness=2, outline_color=(0, 0, 0), delay_between_chunks=0.1,
                      font_path=os.path.join(os.path.dirname(os.path.abspath(__file__)),'Montserrat-Bold.ttf')):
    
    chunks = split_text_into_chunks(text, 3)  # Adjust chunk size as needed

    cap = cv2.VideoCapture(input_video)
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    out = cv2.VideoWriter(output_video, fourcc, fps, (width, height))

    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    chunk_duration_frames = duration * fps
    delay_frames = int(delay_between_chunks * fps)

    font = ImageFont.truetype(font_path, fontsize)

    current_frame = 0

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        draw = ImageDraw.Draw(frame_pil)

        chunk_index = current_frame // (chunk_duration_frames + delay_frames)

        if current_frame % (chunk_duration_frames + delay_frames) < chunk_duration_frames and chunk_index < len(chunks):
            chunk = chunks[chunk_index]
            text_width, text_height = draw.textsize(chunk, font=font)
            text_x = (width - text_width) // 2
            text_y = height - 400  # Position text at the bottom

            if text_width > width:
                words = chunk.split()
                half = len(words) // 2
                line1 = ' '.join(words[:half])
                line2 = ' '.join(words[half:])

                text_size_line1 = draw.textsize(line1, font=font)
                text_size_line2 = draw.textsize(line2, font=font)
                text_x_line1 = (width - text_size_line1[0]) // 2
                text_x_line2 = (width - text_size_line2[0]) // 2
                text_y = height - 250 - text_size_line1[1]  # Adjust vertical position for two lines

                for dx in range(-outline_thickness, outline_thickness + 1):
                    for dy in range(-outline_thickness, outline_thickness + 1):
                        if dx != 0 or dy != 0:
                            draw.text((text_x_line1 + dx, text_y + dy), line1, font=font, fill=outline_color)
                            draw.text((text_x_line2 + dx, text_y + text_size_line1[1] + dy), line2, font=font, fill=outline_color)
                
                draw.text((text_x_line1, text_y), line1, font=font, fill=fontcolor)
                draw.text((text_x_line2, text_y + text_size_line1[1]), line2, font=font, fill=fontcolor)

            else:
                for dx in range(-outline_thickness, outline_thickness + 1):
                    for dy in range(-outline_thickness, outline_thickness + 1):
                        if dx != 0 or dy != 0:
                            draw.text((text_x + dx, text_y + dy), chunk, font=font, fill=outline_color)
                
                draw.text((text_x, text_y), chunk, font=font, fill=fontcolor)

            frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR)

        out.write(frame)
        current_frame += 1

    cap.release()
    out.release()
    cv2.destroyAllWindows()

def apply_zoom_in_effect(clip, zoom_factor=1.2):
    width, height = clip.size
    duration = clip.duration

    def zoom_in_effect(get_frame, t):
        frame = get_frame(t)
        zoom = 1 + (zoom_factor - 1) * (t / duration)
        new_width, new_height = int(width * zoom), int(height * zoom)
        resized_frame = cv2.resize(frame, (new_width, new_height))
        
        x_start = (new_width - width) // 2
        y_start = (new_height - height) // 2
        cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width]
        
        return cropped_frame

    return clip.fl(zoom_in_effect, apply_to=['mask'])

@tool(args_schema=VideoGeneration)
def create_video_from_images_and_audio(images_dir, speeches_dir, zoom_factor=1.2):
    """Creates video using images and audios.
    Args:
    images_dir: path to images folder, example 'outputs/images'
    speeches_dir: path to speeches folder, example 'outputs/speeches'"""
    client = Groq()
    images_paths = sorted(os.listdir(os.path.join(os.path.dirname(os.path.abspath(__file__)),images_dir)))
    audio_paths = sorted(os.listdir(os.path.join(os.path.dirname(os.path.abspath(__file__)),speeches_dir)))
    clips = []
    temp_files = []
    
    for i in range(min(len(images_paths), len(audio_paths))):
        img_clip = ImageClip(os.path.join(os.path.dirname(os.path.abspath(__file__)),images_dir, images_paths[i]))
        audioclip = AudioFileClip(os.path.join(os.path.dirname(os.path.abspath(__file__)),speeches_dir, audio_paths[i]))
        videoclip = img_clip.set_duration(audioclip.duration)
        zoomed_clip = apply_zoom_in_effect(videoclip, zoom_factor)
        
        with open(os.path.join(os.path.dirname(os.path.abspath(__file__)),speeches_dir, audio_paths[i]), "rb") as file:
            transcription = client.audio.transcriptions.create(
                file=(audio_paths[i], file.read()),
                model="whisper-large-v3",
                response_format="verbose_json",
            )
            caption = transcription.text
        
        temp_video_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), f"outputs/final_video/temp_zoomed_{i}.mp4")
        zoomed_clip.write_videofile(temp_video_path, codec='libx264', fps=24)
        temp_files.append(temp_video_path)
        
        final_video_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), f"outputs/final_video/temp_captioned_{i}.mp4")
        add_text_to_video(temp_video_path, final_video_path, caption, duration=1, fontsize=60)
        temp_files.append(final_video_path)
        
        final_clip = VideoFileClip(final_video_path)
        final_clip = final_clip.set_audio(audioclip)
        
        clips.append(final_clip)
    
    final_clip = concatenate_videoclips(clips)
    final_clip.write_videofile(os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs/final_video/final_video.mp4"), codec='libx264', fps=24)
    
    # Close all video files properly
    for clip in clips:
        clip.close()
        
    # Remove all temporary files
    for temp_file in temp_files:
        try:
            os.remove(temp_file)
        except Exception as e:
            print(f"Error removing file {temp_file}: {e}")
    
    return os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs/final_video/final_video.mp4")

# Example usage
# image_paths = "outputs/images"
# audio_paths = "outputs/speeches"

# video_path = create_video_from_images_and_audio(image_paths, audio_paths)
# print(f"Video created at: {video_path}")

class WikiInputs(BaseModel):
    """Inputs to the wikipedia tool."""
    query: str = Field(description="query to look up in Wikipedia, should be 3 or less words")

api_wrapper = WikipediaAPIWrapper(top_k_results=3)#, doc_content_chars_max=100)

wiki_tool = WikipediaQueryRun(
    name="wiki-tool",
    description="{query:'input here'}",
    args_schema=WikiInputs,
    api_wrapper=api_wrapper,
    return_direct=True,
)

wiki = Tool(
    name = 'wikipedia',
    func = wiki_tool.run,
    description= "{query:'input here'}"
)

# wiki_tool.run("latest news in India")

# @tool
def process_script(script):
    """Used to process the script into dictionary format"""
    dict = {}
    dict['text_for_image_generation'] = re.findall(r'<image>(.*?)</?image>', script)
    dict['text_for_speech_generation'] = re.findall(r'<narration>.*?</?narration>', script)
    return dict

@tool#(args_schema=ImageGeneration)
def image_generator(script):
    """Generates images for the given script.
    Saves it to images_dir and return path
    Args:
    script: a complete script containing narrations and image descriptions"""
    # images_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), './outputs/images')
    images_dir = os.path.join('./outputs/images')

    os.makedirs(images_dir, exist_ok=True)
    # if num==1:
    for filename in os.listdir(images_dir):
        file_path = os.path.join(images_dir, filename)
        if os.path.isfile(file_path):
            os.remove(file_path)
    
    dict = process_script(script)
    for i, text in enumerate(dict['text_for_image_generation']):
        # image = pipe(text, num_inference_steps=12, guidance_scale=2, width=720, height=1280, verbose=0).images[0]
        # image.save(os.path.join(images_dir, f'image{i}.jpg'))
        response = requests.post(
        f"https://api.stability.ai/v2beta/stable-image/generate/core",
        headers={
            "authorization": os.environ.get('STABILITY_AI_API_KEY'),
            "accept": "image/*"
        },
        files={"none": ''},
        data={
            "prompt": text,
            "output_format": "png",
            'aspect_ratio': "9:16",
        },
        )

        if response.status_code == 200:
            with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file:
                file.write(response.content)
        else:
            raise Exception(str(response.json()))
    return f'images generated.'#f'image generated for "{text}" and saved to directory {images_dir} as image{num}.jpg'

@tool
def speech_generator(script):
    """Generates speech for given text
    Saves it to speech_dir and return path
    Args:
    script: a complete script containing narrations and image descriptions"""
    speech_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), './outputs/speeches')
    os.makedirs(speech_dir, exist_ok=True)

    # if num==1:
    for filename in os.listdir(speech_dir):
        file_path = os.path.join(speech_dir, filename)
        if os.path.isfile(file_path):
            os.remove(file_path)
    
    dict = process_script(script)
    print(dict)
    for i, text in enumerate(dict['text_for_speech_generation']):
        generate_speech(text, speech_dir, num=i)
    return f'speechs generated.'#f'speech generated for "{text}" and saved to directory {speech_dir} as speech{num}.mp3'