Spaces:
Running
Running
File size: 11,032 Bytes
e881d3d 9b6561b e881d3d 9b6561b e881d3d 5565914 e881d3d 9b6561b 063ae63 9b6561b e881d3d 9b6561b 063ae63 9b6561b d20cb1b 063ae63 9b65a9f 063ae63 9b6561b 063ae63 9b6561b 063ae63 9b6561b 063ae63 9b6561b 063ae63 9b6561b 063ae63 9b6561b 063ae63 9b6561b 063ae63 b951a7d d355a51 b951a7d 063ae63 d20cb1b 063ae63 a1b855c 063ae63 d20cb1b 063ae63 9b65a9f 063ae63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
from crewai import Task, Agent, Crew, Process
from langchain.tools import tool, Tool
import re
import os
from langchain_groq import ChatGroq
# llm = ChatGroq(model='mixtral-8x7b-32768', temperature=0.6, max_tokens=2048)
llm = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=1024, api_key='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')
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_core.pydantic_v1 import BaseModel, Field
import requests
# import pyttsx3
import io
import tempfile
from gtts import gTTS
from pydub import AudioSegment
from groq import Groq
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip
def split_text_into_chunks(text, chunk_size):
words = text.split()
return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
def add_text_to_video(input_video, text, duration=1, fontsize=40, fontcolor=(255, 255, 255),
outline_thickness=2, outline_color=(0, 0, 0), delay_between_chunks=0.3,
font_path='Montserrat-Bold.ttf'):
temp_output_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
output_video = temp_output_file.name
chunks = split_text_into_chunks(text, 3) # Adjust chunk size as needed
cap = cv2.VideoCapture(input_video)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter(output_video, fourcc, fps, (width, height))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
chunk_duration_frames = duration * fps
delay_frames = int(delay_between_chunks * fps)
font = ImageFont.truetype(font_path, fontsize)
current_frame = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(frame_pil)
chunk_index = current_frame // (chunk_duration_frames + delay_frames)
if current_frame % (chunk_duration_frames + delay_frames) < chunk_duration_frames and chunk_index < len(chunks):
chunk = chunks[chunk_index]
text_bbox = draw.textbbox((0, 0), chunk, font=font)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
text_x = (width - text_width) // 2
text_y = height - 400 # Position text at the bottom
if text_width > width:
words = chunk.split()
half = len(words) // 2
line1 = ' '.join(words[:half])
line2 = ' '.join(words[half:])
text_size_line1 = draw.textsize(line1, font=font)
text_size_line2 = draw.textsize(line2, font=font)
text_x_line1 = (width - text_size_line1[0]) // 2
text_x_line2 = (width - text_size_line2[0]) // 2
text_y = height - 250 - text_size_line1[1] # Adjust vertical position for two lines
for dx in range(-outline_thickness, outline_thickness + 1):
for dy in range(-outline_thickness, outline_thickness + 1):
if dx != 0 or dy != 0:
draw.text((text_x_line1 + dx, text_y + dy), line1, font=font, fill=outline_color)
draw.text((text_x_line2 + dx, text_y + text_size_line1[1] + dy), line2, font=font, fill=outline_color)
draw.text((text_x_line1, text_y), line1, font=font, fill=fontcolor)
draw.text((text_x_line2, text_y + text_size_line1[1]), line2, font=font, fill=fontcolor)
else:
for dx in range(-outline_thickness, outline_thickness + 1):
for dy in range(-outline_thickness, outline_thickness + 1):
if dx != 0 or dy != 0:
draw.text((text_x + dx, text_y + dy), chunk, font=font, fill=outline_color)
draw.text((text_x, text_y), chunk, font=font, fill=fontcolor)
frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR)
out.write(frame)
current_frame += 1
cap.release()
out.release()
cv2.destroyAllWindows()
return output_video
def apply_zoom_in_effect(clip, zoom_factor=1.2):
width, height = clip.size
duration = clip.duration
def zoom_in_effect(get_frame, t):
frame = get_frame(t)
zoom = 1 + (zoom_factor - 1) * (t / duration)
new_width, new_height = int(width * zoom), int(height * zoom)
resized_frame = cv2.resize(frame, (new_width, new_height))
x_start = (new_width - width) // 2
y_start = (new_height - height) // 2
cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width]
return cropped_frame
return clip.fl(zoom_in_effect, apply_to=['mask'])
@tool
def create_video_from_images_and_audio(images_dir, speeches_dir, zoom_factor=1.2):
"""Creates video using images and audios.
Args:
images_dir: path to images folder
speeches_dir: path to speeches folder"""
client = Groq(api_key='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')
images_paths = sorted(os.listdir(images_dir))
audio_paths = sorted(os.listdir(speeches_dir))
clips = []
temp_files = []
for i in range(min(len(images_paths), len(audio_paths))):
img_clip = ImageClip(os.path.join(images_dir, images_paths[i]))
audioclip = AudioFileClip(os.path.join(speeches_dir, audio_paths[i]))
videoclip = img_clip.set_duration(audioclip.duration)
zoomed_clip = apply_zoom_in_effect(videoclip, zoom_factor)
with open(os.path.join(speeches_dir, audio_paths[i]), "rb") as file:
transcription = client.audio.transcriptions.create(
file=(audio_paths[i], file.read()),
model="whisper-large-v3",
response_format="verbose_json",
)
caption = transcription.text
temp_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
zoomed_clip.write_videofile(temp_video_path, codec='libx264', fps=24)
temp_files.append(temp_video_path)
final_video_path = add_text_to_video(temp_video_path, caption, duration=1, fontsize=60)
temp_files.append(final_video_path)
final_clip = VideoFileClip(final_video_path)
final_clip = final_clip.set_audio(audioclip)
clips.append(final_clip)
final_clip = concatenate_videoclips(clips)
temp_final_video = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
final_clip.write_videofile(temp_final_video, codec='libx264', fps=24)
# Close all video files properly
for clip in clips:
clip.close()
# Remove all temporary files
for temp_file in temp_files:
try:
os.remove(temp_file)
except Exception as e:
print(f"Error removing file {temp_file}: {e}")
return temp_final_video
from langchain.pydantic_v1 import BaseModel, Field
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
class WikiInputs(BaseModel):
"""Inputs to the wikipedia tool."""
query: str = Field(description="query to look up in Wikipedia, should be 3 or less words")
api_wrapper = WikipediaAPIWrapper(top_k_results=2)#, doc_content_chars_max=100)
wiki_tool = WikipediaQueryRun(
name="wiki-tool",
description="{query:'input here'}",
args_schema=WikiInputs,
api_wrapper=api_wrapper,
return_direct=True,
)
wiki = Tool(
name = 'wikipedia',
func = wiki_tool.run,
description= "{query:'input here'}"
)
def process_script(script):
"""Used to process the script into dictionary format"""
dict = {}
text_for_image_generation = re.findall(r'<image>(.*?)</?image>', script, re.DOTALL)
text_for_speech_generation = re.findall(r'<narration>(.*?)</?narration>', script, re.DOTALL)
dict['text_for_image_generation'] = text_for_image_generation
dict['text_for_speech_generation'] = text_for_speech_generation
return dict
def generate_speech(text, lang='en', speed=1.15, num=0):
"""
Generates speech for the given script using gTTS and adjusts the speed.
"""
temp_speech_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
temp_speech_path = temp_speech_file.name
tts = gTTS(text=text, lang=lang)
tts.save(temp_speech_path)
sound = AudioSegment.from_file(temp_speech_path)
if speed != 1.0:
sound_with_altered_speed = sound._spawn(sound.raw_data, overrides={
"frame_rate": int(sound.frame_rate * speed)
}).set_frame_rate(sound.frame_rate)
sound_with_altered_speed.export(temp_speech_path, format="mp3")
else:
sound.export(temp_speech_path, format="mp3")
temp_speech_file.close()
return temp_speech_path
@tool
def image_generator(script):
"""Generates images for the given script.
Saves it to a temporary directory and returns the path.
Args:
script: a complete script containing narrations and image descriptions."""
images_dir = tempfile.mkdtemp()
dict = process_script(script)
for i, text in enumerate(dict['text_for_image_generation']):
response = requests.post(
f"https://api.stability.ai/v2beta/stable-image/generate/core",
headers={
"authorization": os.environ.get('STABILITY_AI_API_KEY'),
"accept": "image/*"
},
files={"none": ''},
data={
"prompt": text,
"output_format": "png",
'aspect_ratio': "9:16",
},
)
if response.status_code == 200:
with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file:
file.write(response.content)
else:
raise Exception(f"Image generation failed with status code {response.status_code} and message: {response.text}")
return images_dir
@tool
def speech_generator(script):
"""
Generates speech files for the given script using gTTS.
Saves them to a temporary directory and returns the path.
Args:
script: a complete script containing narrations and image descriptions.
"""
speeches_dir = tempfile.mkdtemp()
dict = process_script(script)
for i, text in enumerate(dict['text_for_speech_generation']):
speech_path = generate_speech(text, num=i)
os.rename(speech_path, os.path.join(speeches_dir, f'speech_{i}.mp3'))
return speeches_dir
|