File size: 11,032 Bytes
e881d3d
9b6561b
 
 
 
e881d3d
 
9b6561b
 
e881d3d
 
 
 
 
5565914
 
e881d3d
 
 
 
 
9b6561b
 
 
 
 
063ae63
 
 
 
 
 
9b6561b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e881d3d
 
9b6561b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
063ae63
 
9b6561b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d20cb1b
063ae63
9b65a9f
 
 
 
063ae63
 
 
9b6561b
 
 
063ae63
 
 
9b6561b
 
 
063ae63
 
 
 
 
 
 
9b6561b
063ae63
9b6561b
 
 
063ae63
9b6561b
 
 
 
 
 
 
 
063ae63
 
9b6561b
 
 
 
 
 
063ae63
 
 
 
 
9b6561b
063ae63
 
 
 
 
b951a7d
 
 
 
 
d355a51
b951a7d
 
 
 
 
 
 
 
 
 
 
 
 
 
063ae63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d20cb1b
063ae63
 
 
 
 
 
 
 
 
 
 
 
a1b855c
063ae63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d20cb1b
063ae63
 
 
 
9b65a9f
 
063ae63
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from crewai import Task, Agent, Crew, Process
from langchain.tools import tool, Tool
import re
import os
from langchain_groq import ChatGroq
# llm = ChatGroq(model='mixtral-8x7b-32768', temperature=0.6, max_tokens=2048)
llm = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=1024, api_key='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')
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_core.pydantic_v1 import BaseModel, Field
import requests
# import pyttsx3
import io
import tempfile
from gtts import gTTS
from pydub import AudioSegment
from groq import Groq
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip

def split_text_into_chunks(text, chunk_size):
    words = text.split()
    return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]

def add_text_to_video(input_video, text, duration=1, fontsize=40, fontcolor=(255, 255, 255),
                      outline_thickness=2, outline_color=(0, 0, 0), delay_between_chunks=0.3,
                      font_path='Montserrat-Bold.ttf'):
    temp_output_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
    output_video = temp_output_file.name

    chunks = split_text_into_chunks(text, 3)  # Adjust chunk size as needed

    cap = cv2.VideoCapture(input_video)
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    out = cv2.VideoWriter(output_video, fourcc, fps, (width, height))

    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    chunk_duration_frames = duration * fps
    delay_frames = int(delay_between_chunks * fps)

    font = ImageFont.truetype(font_path, fontsize)

    current_frame = 0

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        draw = ImageDraw.Draw(frame_pil)

        chunk_index = current_frame // (chunk_duration_frames + delay_frames)

        if current_frame % (chunk_duration_frames + delay_frames) < chunk_duration_frames and chunk_index < len(chunks):
            chunk = chunks[chunk_index]
            text_bbox = draw.textbbox((0, 0), chunk, font=font)
            text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
            text_x = (width - text_width) // 2
            text_y = height - 400  # Position text at the bottom

            if text_width > width:
                words = chunk.split()
                half = len(words) // 2
                line1 = ' '.join(words[:half])
                line2 = ' '.join(words[half:])

                text_size_line1 = draw.textsize(line1, font=font)
                text_size_line2 = draw.textsize(line2, font=font)
                text_x_line1 = (width - text_size_line1[0]) // 2
                text_x_line2 = (width - text_size_line2[0]) // 2
                text_y = height - 250 - text_size_line1[1]  # Adjust vertical position for two lines

                for dx in range(-outline_thickness, outline_thickness + 1):
                    for dy in range(-outline_thickness, outline_thickness + 1):
                        if dx != 0 or dy != 0:
                            draw.text((text_x_line1 + dx, text_y + dy), line1, font=font, fill=outline_color)
                            draw.text((text_x_line2 + dx, text_y + text_size_line1[1] + dy), line2, font=font, fill=outline_color)
                
                draw.text((text_x_line1, text_y), line1, font=font, fill=fontcolor)
                draw.text((text_x_line2, text_y + text_size_line1[1]), line2, font=font, fill=fontcolor)

            else:
                for dx in range(-outline_thickness, outline_thickness + 1):
                    for dy in range(-outline_thickness, outline_thickness + 1):
                        if dx != 0 or dy != 0:
                            draw.text((text_x + dx, text_y + dy), chunk, font=font, fill=outline_color)
                
                draw.text((text_x, text_y), chunk, font=font, fill=fontcolor)

            frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR)

        out.write(frame)
        current_frame += 1

    cap.release()
    out.release()
    cv2.destroyAllWindows()
    
    return output_video

def apply_zoom_in_effect(clip, zoom_factor=1.2):
    width, height = clip.size
    duration = clip.duration

    def zoom_in_effect(get_frame, t):
        frame = get_frame(t)
        zoom = 1 + (zoom_factor - 1) * (t / duration)
        new_width, new_height = int(width * zoom), int(height * zoom)
        resized_frame = cv2.resize(frame, (new_width, new_height))
        
        x_start = (new_width - width) // 2
        y_start = (new_height - height) // 2
        cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width]
        
        return cropped_frame

    return clip.fl(zoom_in_effect, apply_to=['mask'])

@tool
def create_video_from_images_and_audio(images_dir, speeches_dir, zoom_factor=1.2):
    """Creates video using images and audios.
    Args:
    images_dir: path to images folder
    speeches_dir: path to speeches folder"""
    client = Groq(api_key='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')
    images_paths = sorted(os.listdir(images_dir))
    audio_paths = sorted(os.listdir(speeches_dir))
    clips = []
    temp_files = []
    
    for i in range(min(len(images_paths), len(audio_paths))):
        img_clip = ImageClip(os.path.join(images_dir, images_paths[i]))
        audioclip = AudioFileClip(os.path.join(speeches_dir, audio_paths[i]))
        videoclip = img_clip.set_duration(audioclip.duration)
        zoomed_clip = apply_zoom_in_effect(videoclip, zoom_factor)
        
        with open(os.path.join(speeches_dir, audio_paths[i]), "rb") as file:
            transcription = client.audio.transcriptions.create(
                file=(audio_paths[i], file.read()),
                model="whisper-large-v3",
                response_format="verbose_json",
            )
            caption = transcription.text
        
        temp_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
        zoomed_clip.write_videofile(temp_video_path, codec='libx264', fps=24)
        temp_files.append(temp_video_path)
        
        final_video_path = add_text_to_video(temp_video_path, caption, duration=1, fontsize=60)
        temp_files.append(final_video_path)
        
        final_clip = VideoFileClip(final_video_path)
        final_clip = final_clip.set_audio(audioclip)
        
        clips.append(final_clip)
    
    final_clip = concatenate_videoclips(clips)
    temp_final_video = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
    final_clip.write_videofile(temp_final_video, codec='libx264', fps=24)
    
    # Close all video files properly
    for clip in clips:
        clip.close()
        
    # Remove all temporary files
    for temp_file in temp_files:
        try:
            os.remove(temp_file)
        except Exception as e:
            print(f"Error removing file {temp_file}: {e}")
    
    return temp_final_video

from langchain.pydantic_v1 import BaseModel, Field
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper

class WikiInputs(BaseModel):
    """Inputs to the wikipedia tool."""
    query: str = Field(description="query to look up in Wikipedia, should be 3 or less words")

api_wrapper = WikipediaAPIWrapper(top_k_results=2)#, doc_content_chars_max=100)

wiki_tool = WikipediaQueryRun(
    name="wiki-tool",
    description="{query:'input here'}",
    args_schema=WikiInputs,
    api_wrapper=api_wrapper,
    return_direct=True,
)

wiki = Tool(
    name = 'wikipedia',
    func = wiki_tool.run,
    description= "{query:'input here'}"
)

def process_script(script):
    """Used to process the script into dictionary format"""
    dict = {}
    text_for_image_generation = re.findall(r'<image>(.*?)</?image>', script, re.DOTALL)
    text_for_speech_generation = re.findall(r'<narration>(.*?)</?narration>', script, re.DOTALL)
    dict['text_for_image_generation'] = text_for_image_generation
    dict['text_for_speech_generation'] = text_for_speech_generation
    return dict

def generate_speech(text, lang='en', speed=1.15, num=0):
    """
    Generates speech for the given script using gTTS and adjusts the speed.
    """
    temp_speech_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
    temp_speech_path = temp_speech_file.name

    tts = gTTS(text=text, lang=lang)
    tts.save(temp_speech_path)

    sound = AudioSegment.from_file(temp_speech_path)
    if speed != 1.0:
        sound_with_altered_speed = sound._spawn(sound.raw_data, overrides={
            "frame_rate": int(sound.frame_rate * speed)
        }).set_frame_rate(sound.frame_rate)
        sound_with_altered_speed.export(temp_speech_path, format="mp3")
    else:
        sound.export(temp_speech_path, format="mp3")

    temp_speech_file.close()
    return temp_speech_path

@tool
def image_generator(script):
    """Generates images for the given script.
    Saves it to a temporary directory and returns the path.
    Args:
    script: a complete script containing narrations and image descriptions."""
    images_dir = tempfile.mkdtemp()

    dict = process_script(script)
    for i, text in enumerate(dict['text_for_image_generation']):
        response = requests.post(
            f"https://api.stability.ai/v2beta/stable-image/generate/core",
            headers={
                "authorization": os.environ.get('STABILITY_AI_API_KEY'),
                "accept": "image/*"
            },
            files={"none": ''},
            data={
                "prompt": text,
                "output_format": "png",
                'aspect_ratio': "9:16",
            },
        )

        if response.status_code == 200:
            with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file:
                file.write(response.content)
        else:
            raise Exception(f"Image generation failed with status code {response.status_code} and message: {response.text}")

    return images_dir

@tool
def speech_generator(script):
    """
    Generates speech files for the given script using gTTS.
    Saves them to a temporary directory and returns the path.
    Args:
    script: a complete script containing narrations and image descriptions.
    """
    speeches_dir = tempfile.mkdtemp()

    dict = process_script(script)
    for i, text in enumerate(dict['text_for_speech_generation']):
        speech_path = generate_speech(text, num=i)
        os.rename(speech_path, os.path.join(speeches_dir, f'speech_{i}.mp3'))

    return speeches_dir