Spaces:
Running
Running
File size: 4,589 Bytes
ceaed91 7fb148b ceaed91 7fb148b ceaed91 5188893 ceaed91 5188893 ceaed91 5188893 ceaed91 7fb148b ceaed91 7fb148b 4e4c3a3 5188893 7fb148b ceaed91 7fb148b 4e4c3a3 5188893 7fb148b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
import cv2
import smtplib
import gradio as gr
from email import encoders
from ultralytics import YOLO
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email.mime.multipart import MIMEMultipart
sender_email = os.environ.get("sender_email")
receiver_email = os.environ.get("receiver_email")
sender_password = os.environ.get("sender_password")
smtp_port = 8080
smtp_server = "smtp.gmail.com"
subject = "Accident detected"
def send_email(accident_type,image):
body = accident_type
msg = MIMEMultipart()
msg['From'] = sender_email
msg['To'] = receiver_email
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
is_success, buffer = cv2.imencode(".jpg", image)
attachment = buffer.tobytes()
attachment_package = MIMEBase('application', 'octet-stream')
attachment_package.set_payload((attachment)
encoders.encode_base64(attachment_package)
attachment_package.add_header('Content-Disposition', "attachment; filename= " + filename)
msg.attach(attachment_package)
text = msg.as_string()
print("Connecting to server")
gmail_server = smtplib.SMTP(smtp_server, smtp_port)
gmail_server.starttls()
gmail_server.login(sender_email, sender_password)
print("Successfully Connected to Server")
print("Sending email to ", receiver_email)
gmail_server.sendmail(sender_email, receiver_email, text)
print("Email sent to ", receiver_email)
gmail_server.quit()
def check_acc(box):
res_index_list = box.cls.tolist()
result = ""
for index in res_index_list:
if index == 1:
result = "Bike Bike Accident Detected"
break
elif index == 2:
result = "Bike Object Accident Detected"
break
elif index == 3:
result = "Bike Person Accident Detected"
break
elif index == 5:
result = "Car Bike Accident Detected"
break
elif index == 6:
result = "Car Car Accident Detected"
break
elif index == 7:
result = "Car Object Accident Detected"
break
elif index == 8:
result = "Car Person Accident Detected"
break
return result
def image_predict(image):
res = ""
model_path = "best.pt"
model = YOLO(model_path)
results = model.predict(image,conf = 0.6,iou = 0.3,imgsz = 512)
box = results[0].boxes
res = check_acc(box)
annotated_frame = results[0].plot()
if len(res) >0:
annotated_frame_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)
send_email(res, annotated_frame_bgr)
return (res, annotated_frame)
return ("No Class Detected", None)
def extract_frames(video):
vidcap = cv2.VideoCapture(video)
vidcap = cv2.VideoCapture(video)
fps = vidcap.get(cv2.CAP_PROP_FPS)
nof = 4
frame_no = 0
while vidcap.isOpened():
res = ""
render = None
success, image = vidcap.read()
if success ==False:
break
# Check if it's time to process the frame based on the desired interval
if (frame_no % (int(fps / nof))) == 0:
model_path = "best.pt"
model = YOLO(model_path)
results = model.predict(image,conf = 0.6,iou = 0.3,imgsz = 512)
box = results[0].boxes
res = check_acc(box)
annotated_frame = results[0].plot()
if len(res) >0:
annotated_frame_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)
send_email(res, annotated_frame_bgr)
return (res, annotated_frame)
frame_no += 1 # Increment frame number
return ("No Class Detected", None)
def take_input(image, video):
if(video != None):
res = extract_frames(video)
else:
res = image_predict(image)
return res
with gr.Blocks(title="YOLOS Object Detection", css=".gradio-container {background:lightyellow;}") as demo:
gr.HTML('<h1>Accident Detection Using Yolov8</h1>')
gr.HTML("<br>")
with gr.Row():
input_image = gr.Image(label="Input image")
input_video = gr.Video(label="Input video")
output_label = gr.Text(label="output label")
output_image = gr.Image(label="Output image")
gr.HTML("<br>")
send_btn = gr.Button("Detect")
gr.HTML("<br>")
send_btn.click(fn=take_input, inputs=[input_image, input_video], outputs=[output_label, output_image])
demo.launch(debug=True)
|