File size: 8,357 Bytes
fe7fef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# %%
import numpy as np
import pandas as pd
import csv
import torch.nn as nn
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import TensorDataset, DataLoader
from transformers import BertTokenizer,BertConfig,AdamW
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from tqdm import tqdm
import torch
import transformers
from torch.utils.data import Dataset, DataLoader

# %%

class MyDataSet(Dataset):
    def __init__(self, loaded_data):
        self.data = loaded_data
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        return self.data[idx]
 
Data_path = "/kaggle/input/inference/train.csv"
Totle_data = pd.read_csv(Data_path)
Totle_data = Totle_data.sample(frac=0.1)
Totle_data = Totle_data.dropna(axis=0,subset = ["2"])
custom_dataset = MyDataSet(Totle_data)
#按照比例划分
train_size = int(len(custom_dataset) * 0.6)
validate_size = int(len(custom_dataset) * 0.1)
test_size = len(custom_dataset) - validate_size - train_size
train_dataset, validate_dataset, test_dataset = torch.utils.data.random_split(custom_dataset, [train_size, validate_size, test_size])
 
#设置保存路径
train_data_path="Bert_Try.csv"
dev_data_path = "Bert_Dev.csv" 
test_data_path="Bert_Test.csv"

train_dataset = Totle_data.iloc[train_dataset.indices]
validate_dataset = Totle_data.iloc[validate_dataset.indices]
test_dataset = Totle_data.iloc[test_dataset.indices]

#index参数设置为False表示不保存行索引,header设置为False表示不保存列索引
train_dataset.to_csv(train_data_path,index=False,header=True)
validate_dataset.to_csv(dev_data_path ,index=False,header=True)
test_dataset.to_csv(test_data_path,index=False,header=True)

# %%
data = pd.read_csv(train_data_path)
data.head

# %%

class BertClassificationModel(nn.Module):
    def __init__(self):
        super(BertClassificationModel, self).__init__()   
        #加载预训练模型
        pretrained_weights="bert-base-chinese"
        self.bert = transformers.BertModel.from_pretrained(pretrained_weights)
        for param in self.bert.parameters():
            param.requires_grad = True
        #定义线性函数      
        self.dense = nn.Linear(768, 3)
        
    def forward(self, input_ids,token_type_ids,attention_mask):
        #得到bert_output
        bert_output = self.bert(input_ids=input_ids,token_type_ids=token_type_ids, attention_mask=attention_mask)
        #获得预训练模型的输出
        bert_cls_hidden_state = bert_output[1]
        #将768维的向量输入到线性层映射为二维向量
        linear_output = self.dense(bert_cls_hidden_state)
        return  linear_output

# %%

def encoder(max_len,vocab_path,text_list):
    #将text_list embedding成bert模型可用的输入形式
    #加载分词模型
    tokenizer = BertTokenizer.from_pretrained("bert-base-chinese")
    tokenizer = tokenizer(
        text_list,
        padding = True,
        truncation = True,
        max_length = max_len,
        return_tensors='pt'  # 返回的类型为pytorch tensor
        )
    input_ids = tokenizer['input_ids']
    token_type_ids = tokenizer['token_type_ids']
    attention_mask = tokenizer['attention_mask']
    return input_ids,token_type_ids,attention_mask

# %%
labels2dict = {"neutral":0,"entailment":1,"contradiction":2}
def load_data(path):
    csvFileObj = open(path)
    readerObj = csv.reader(csvFileObj)
    text_list = []
    labels = []
    for row in readerObj:
        #跳过表头
        if readerObj.line_num == 1:
            continue
        #label在什么位置就改成对应的index
        label = int(labels2dict[row[0]])
        text = row[1]
        text_list.append(text)
        labels.append(label)
    #调用encoder函数,获得预训练模型的三种输入形式
    input_ids,token_type_ids,attention_mask = encoder(max_len=150,vocab_path="/root/Bert/bert-base-chinese/vocab.txt",text_list=text_list)
    labels = torch.tensor(labels)
    #将encoder的返回值以及label封装为Tensor的形式
    data = TensorDataset(input_ids,token_type_ids,attention_mask,labels)
    return data

# %%
#设定batch_size
batch_size = 16
#引入数据路径
train_data_path="Bert_Try.csv"
dev_data_path="Bert_Dev.csv"
test_data_path="Bert_Test.csv"
#调用load_data函数,将数据加载为Tensor形式
train_data = load_data(train_data_path)
dev_data = load_data(dev_data_path)
test_data = load_data(test_data_path)
#将训练数据和测试数据进行DataLoader实例化
train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True)
dev_loader = DataLoader(dataset=dev_data, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False)

# %%
def dev(model,dev_loader):
    model.to(device)

    model.eval()

    with torch.no_grad():
        correct = 0
        total = 0
        for step, (input_ids,token_type_ids,attention_mask,labels) in tqdm(enumerate(dev_loader),desc='Dev Itreation:'):                
            input_ids,token_type_ids,attention_mask,labels=input_ids.to(device),token_type_ids.to(device),attention_mask.to(device),labels.to(device)
            out_put = model(input_ids,token_type_ids,attention_mask)
            _, predict = torch.max(out_put.data, 1)
            correct += (predict==labels).sum().item()
            total += labels.size(0)
        res = correct / total
    return res

# %%

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def train(model,train_loader,dev_loader) :

    model.to(device)
    model.train()
    criterion = nn.CrossEntropyLoss()
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']

    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
         'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]

    optimizer_params = {'lr': 1e-5, 'eps': 1e-6, 'correct_bias': False}
    optimizer = AdamW(optimizer_grouped_parameters, **optimizer_params)
    scheduler = ReduceLROnPlateau(optimizer,mode='max',factor=0.5,min_lr=1e-7, patience=5,verbose= True, threshold=0.0001, eps=1e-08)
    t_total = len(train_loader)

    total_epochs = 10
    bestAcc = 0
    correct = 0
    total = 0
    print('Training and verification begin!')
    for epoch in range(total_epochs): 
        for step, (input_ids,token_type_ids,attention_mask,labels) in enumerate(train_loader):

            optimizer.zero_grad()
            input_ids,token_type_ids,attention_mask,labels=input_ids.to(device),token_type_ids.to(device),attention_mask.to(device),labels.to(device)
            out_put =  model(input_ids,token_type_ids,attention_mask)
            loss = criterion(out_put, labels)
            _, predict = torch.max(out_put.data, 1)
            correct += (predict == labels).sum().item()
            total += labels.size(0)
            loss.backward()
            optimizer.step()
             #每两步进行一次打印
            if (step + 1) % 10 == 0:
                train_acc = correct / total
                print("Train Epoch[{}/{}],step[{}/{}],tra_acc{:.6f} %,loss:{:.6f}".format(epoch + 1, total_epochs, step + 1, len(train_loader),train_acc*100,loss.item()))
            #每五十次进行一次验证
            if (step + 1) % 200 == 0:
                train_acc = correct / total
                #调用验证函数dev对模型进行验证,并将有效果提升的模型进行保存
                acc = dev(model, dev_loader)
                if bestAcc < acc:
                    bestAcc = acc
                    #模型保存路径
                    path = 'bert_model.pkl'
                    torch.save(model, path)
                print("DEV Epoch[{}/{}],step[{}/{}],tra_acc{:.6f} %,bestAcc{:.6f}%,dev_acc{:.6f} %,loss:{:.6f}".format(epoch + 1, total_epochs, step + 1, len(train_loader),train_acc*100,bestAcc*100,acc*100,loss.item()))
        scheduler.step(bestAcc)

# %%

path = '/kaggle/input/inference/bert_model.pkl'
# model = torch.load(path)
#实例化模型
model = BertClassificationModel()
#调用训练函数进行训练与验证
train(model,train_loader,dev_loader)