import comfy.supported_models import comfy.supported_models_base import comfy.utils import math import logging import torch def count_blocks(state_dict_keys, prefix_string): count = 0 while True: c = False for k in state_dict_keys: if k.startswith(prefix_string.format(count)): c = True break if c == False: break count += 1 return count def calculate_transformer_depth(prefix, state_dict_keys, state_dict): context_dim = None use_linear_in_transformer = False transformer_prefix = prefix + "1.transformer_blocks." transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))) if len(transformer_keys) > 0: last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}') context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict time_stack_cross = '{}1.time_stack.0.attn2.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn2.to_q.weight'.format(prefix) in state_dict return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross return None def detect_unet_config(state_dict, key_prefix): state_dict_keys = list(state_dict.keys()) if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model unet_config = {} unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1] patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2] unet_config["patch_size"] = patch_size final_layer = '{}final_layer.linear.weight'.format(key_prefix) if final_layer in state_dict: unet_config["out_channels"] = state_dict[final_layer].shape[0] // (patch_size * patch_size) unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64 unet_config["input_size"] = None y_key = '{}y_embedder.mlp.0.weight'.format(key_prefix) if y_key in state_dict_keys: unet_config["adm_in_channels"] = state_dict[y_key].shape[1] context_key = '{}context_embedder.weight'.format(key_prefix) if context_key in state_dict_keys: in_features = state_dict[context_key].shape[1] out_features = state_dict[context_key].shape[0] unet_config["context_embedder_config"] = {"target": "torch.nn.Linear", "params": {"in_features": in_features, "out_features": out_features}} num_patches_key = '{}pos_embed'.format(key_prefix) if num_patches_key in state_dict_keys: num_patches = state_dict[num_patches_key].shape[1] unet_config["num_patches"] = num_patches unet_config["pos_embed_max_size"] = round(math.sqrt(num_patches)) rms_qk = '{}joint_blocks.0.context_block.attn.ln_q.weight'.format(key_prefix) if rms_qk in state_dict_keys: unet_config["qk_norm"] = "rms" unet_config["pos_embed_scaling_factor"] = None #unused for inference context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix) if context_processor in state_dict_keys: unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.') return unet_config if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade unet_config = {} text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix) if text_mapper_name in state_dict_keys: unet_config['stable_cascade_stage'] = 'c' w = state_dict[text_mapper_name] if w.shape[0] == 1536: #stage c lite unet_config['c_cond'] = 1536 unet_config['c_hidden'] = [1536, 1536] unet_config['nhead'] = [24, 24] unet_config['blocks'] = [[4, 12], [12, 4]] elif w.shape[0] == 2048: #stage c full unet_config['c_cond'] = 2048 elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys: unet_config['stable_cascade_stage'] = 'b' w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)] if w.shape[-1] == 640: unet_config['c_hidden'] = [320, 640, 1280, 1280] unet_config['nhead'] = [-1, -1, 20, 20] unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]] unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]] elif w.shape[-1] == 576: #stage b lite unet_config['c_hidden'] = [320, 576, 1152, 1152] unet_config['nhead'] = [-1, 9, 18, 18] unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]] unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]] return unet_config if '{}transformer.rotary_pos_emb.inv_freq'.format(key_prefix) in state_dict_keys: #stable audio dit unet_config = {} unet_config["audio_model"] = "dit1.0" return unet_config if '{}double_layers.0.attn.w1q.weight'.format(key_prefix) in state_dict_keys: #aura flow dit unet_config = {} unet_config["max_seq"] = state_dict['{}positional_encoding'.format(key_prefix)].shape[1] unet_config["cond_seq_dim"] = state_dict['{}cond_seq_linear.weight'.format(key_prefix)].shape[1] double_layers = count_blocks(state_dict_keys, '{}double_layers.'.format(key_prefix) + '{}.') single_layers = count_blocks(state_dict_keys, '{}single_layers.'.format(key_prefix) + '{}.') unet_config["n_double_layers"] = double_layers unet_config["n_layers"] = double_layers + single_layers return unet_config if '{}mlp_t5.0.weight'.format(key_prefix) in state_dict_keys: #Hunyuan DiT unet_config = {} unet_config["image_model"] = "hydit" unet_config["depth"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.') unet_config["hidden_size"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] if unet_config["hidden_size"] == 1408 and unet_config["depth"] == 40: #DiT-g/2 unet_config["mlp_ratio"] = 4.3637 if state_dict['{}extra_embedder.0.weight'.format(key_prefix)].shape[1] == 3968: unet_config["size_cond"] = True unet_config["use_style_cond"] = True unet_config["image_model"] = "hydit1" return unet_config if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux dit_config = {} dit_config["image_model"] = "flux" dit_config["in_channels"] = 16 dit_config["vec_in_dim"] = 768 dit_config["context_in_dim"] = 4096 dit_config["hidden_size"] = 3072 dit_config["mlp_ratio"] = 4.0 dit_config["num_heads"] = 24 dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.') dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.') dit_config["axes_dim"] = [16, 56, 56] dit_config["theta"] = 10000 dit_config["qkv_bias"] = True dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys return dit_config if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys: return None unet_config = { "use_checkpoint": False, "image_size": 32, "use_spatial_transformer": True, "legacy": False } y_input = '{}label_emb.0.0.weight'.format(key_prefix) if y_input in state_dict_keys: unet_config["num_classes"] = "sequential" unet_config["adm_in_channels"] = state_dict[y_input].shape[1] else: unet_config["adm_in_channels"] = None model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0] in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1] out_key = '{}out.2.weight'.format(key_prefix) if out_key in state_dict: out_channels = state_dict[out_key].shape[0] else: out_channels = 4 num_res_blocks = [] channel_mult = [] attention_resolutions = [] transformer_depth = [] transformer_depth_output = [] context_dim = None use_linear_in_transformer = False video_model = False video_model_cross = False current_res = 1 count = 0 last_res_blocks = 0 last_channel_mult = 0 input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.') for count in range(input_block_count): prefix = '{}input_blocks.{}.'.format(key_prefix, count) prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1) block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys))) if len(block_keys) == 0: break block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys))) if "{}0.op.weight".format(prefix) in block_keys: #new layer num_res_blocks.append(last_res_blocks) channel_mult.append(last_channel_mult) current_res *= 2 last_res_blocks = 0 last_channel_mult = 0 out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) if out is not None: transformer_depth_output.append(out[0]) else: transformer_depth_output.append(0) else: res_block_prefix = "{}0.in_layers.0.weight".format(prefix) if res_block_prefix in block_keys: last_res_blocks += 1 last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels out = calculate_transformer_depth(prefix, state_dict_keys, state_dict) if out is not None: transformer_depth.append(out[0]) if context_dim is None: context_dim = out[1] use_linear_in_transformer = out[2] video_model = out[3] video_model_cross = out[4] else: transformer_depth.append(0) res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output) if res_block_prefix in block_keys_output: out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) if out is not None: transformer_depth_output.append(out[0]) else: transformer_depth_output.append(0) num_res_blocks.append(last_res_blocks) channel_mult.append(last_channel_mult) if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys: transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}') elif "{}middle_block.0.in_layers.0.weight".format(key_prefix) in state_dict_keys: transformer_depth_middle = -1 else: transformer_depth_middle = -2 unet_config["in_channels"] = in_channels unet_config["out_channels"] = out_channels unet_config["model_channels"] = model_channels unet_config["num_res_blocks"] = num_res_blocks unet_config["transformer_depth"] = transformer_depth unet_config["transformer_depth_output"] = transformer_depth_output unet_config["channel_mult"] = channel_mult unet_config["transformer_depth_middle"] = transformer_depth_middle unet_config['use_linear_in_transformer'] = use_linear_in_transformer unet_config["context_dim"] = context_dim if video_model: unet_config["extra_ff_mix_layer"] = True unet_config["use_spatial_context"] = True unet_config["merge_strategy"] = "learned_with_images" unet_config["merge_factor"] = 0.0 unet_config["video_kernel_size"] = [3, 1, 1] unet_config["use_temporal_resblock"] = True unet_config["use_temporal_attention"] = True unet_config["disable_temporal_crossattention"] = not video_model_cross else: unet_config["use_temporal_resblock"] = False unet_config["use_temporal_attention"] = False return unet_config def model_config_from_unet_config(unet_config, state_dict=None): for model_config in comfy.supported_models.models: if model_config.matches(unet_config, state_dict): return model_config(unet_config) logging.error("no match {}".format(unet_config)) return None def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False): unet_config = detect_unet_config(state_dict, unet_key_prefix) if unet_config is None: return None model_config = model_config_from_unet_config(unet_config, state_dict) if model_config is None and use_base_if_no_match: return comfy.supported_models_base.BASE(unet_config) else: return model_config def unet_prefix_from_state_dict(state_dict): candidates = ["model.diffusion_model.", #ldm/sgm models "model.model.", #audio models ] counts = {k: 0 for k in candidates} for k in state_dict: for c in candidates: if k.startswith(c): counts[c] += 1 break top = max(counts, key=counts.get) if counts[top] > 5: return top else: return "model." #aura flow and others def convert_config(unet_config): new_config = unet_config.copy() num_res_blocks = new_config.get("num_res_blocks", None) channel_mult = new_config.get("channel_mult", None) if isinstance(num_res_blocks, int): num_res_blocks = len(channel_mult) * [num_res_blocks] if "attention_resolutions" in new_config: attention_resolutions = new_config.pop("attention_resolutions") transformer_depth = new_config.get("transformer_depth", None) transformer_depth_middle = new_config.get("transformer_depth_middle", None) if isinstance(transformer_depth, int): transformer_depth = len(channel_mult) * [transformer_depth] if transformer_depth_middle is None: transformer_depth_middle = transformer_depth[-1] t_in = [] t_out = [] s = 1 for i in range(len(num_res_blocks)): res = num_res_blocks[i] d = 0 if s in attention_resolutions: d = transformer_depth[i] t_in += [d] * res t_out += [d] * (res + 1) s *= 2 transformer_depth = t_in transformer_depth_output = t_out new_config["transformer_depth"] = t_in new_config["transformer_depth_output"] = t_out new_config["transformer_depth_middle"] = transformer_depth_middle new_config["num_res_blocks"] = num_res_blocks return new_config def unet_config_from_diffusers_unet(state_dict, dtype=None): match = {} transformer_depth = [] attn_res = 1 down_blocks = count_blocks(state_dict, "down_blocks.{}") for i in range(down_blocks): attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}') res_blocks = count_blocks(state_dict, "down_blocks.{}.resnets.".format(i) + '{}') for ab in range(attn_blocks): transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}') transformer_depth.append(transformer_count) if transformer_count > 0: match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1] attn_res *= 2 if attn_blocks == 0: for i in range(res_blocks): transformer_depth.append(0) match["transformer_depth"] = transformer_depth match["model_channels"] = state_dict["conv_in.weight"].shape[0] match["in_channels"] = state_dict["conv_in.weight"].shape[1] match["adm_in_channels"] = None if "class_embedding.linear_1.weight" in state_dict: match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1] elif "add_embedding.linear_1.weight" in state_dict: match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1] SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1], 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0, 'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_diffusers_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 8, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], 'use_temporal_attention': False, 'use_temporal_resblock': False} SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'use_temporal_attention': False, 'use_temporal_resblock': False} Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'use_temporal_attention': False, 'use_temporal_resblock': False} KOALA_700M = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 5], 'transformer_depth_output': [0, 0, 2, 2, 5, 5], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'use_temporal_attention': False, 'use_temporal_resblock': False} KOALA_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 6], 'transformer_depth_output': [0, 0, 2, 2, 6, 6], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'use_temporal_attention': False, 'use_temporal_resblock': False} SD09_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], 'transformer_depth': [1, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1], 'use_temporal_attention': False, 'use_temporal_resblock': False, 'disable_self_attentions': [True, False, False]} SD_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 1, 1, 1, 1], 'use_temporal_attention': False, 'use_temporal_resblock': False} supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p] for unet_config in supported_models: matches = True for k in match: if match[k] != unet_config[k]: matches = False break if matches: return convert_config(unet_config) return None def model_config_from_diffusers_unet(state_dict): unet_config = unet_config_from_diffusers_unet(state_dict) if unet_config is not None: return model_config_from_unet_config(unet_config) return None def convert_diffusers_mmdit(state_dict, output_prefix=""): out_sd = {} if 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: #SD3 num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.') depth = state_dict["pos_embed.proj.weight"].shape[0] // 64 sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix) elif 'joint_transformer_blocks.0.attn.add_k_proj.weight' in state_dict: #AuraFlow num_joint = count_blocks(state_dict, 'joint_transformer_blocks.{}.') num_single = count_blocks(state_dict, 'single_transformer_blocks.{}.') sd_map = comfy.utils.auraflow_to_diffusers({"n_double_layers": num_joint, "n_layers": num_joint + num_single}, output_prefix=output_prefix) else: return None for k in sd_map: weight = state_dict.get(k, None) if weight is not None: t = sd_map[k] if not isinstance(t, str): if len(t) > 2: fun = t[2] else: fun = lambda a: a offset = t[1] if offset is not None: old_weight = out_sd.get(t[0], None) if old_weight is None: old_weight = torch.empty_like(weight) old_weight = old_weight.repeat([3] + [1] * (len(old_weight.shape) - 1)) w = old_weight.narrow(offset[0], offset[1], offset[2]) else: old_weight = weight w = weight w[:] = fun(weight) t = t[0] out_sd[t] = old_weight else: out_sd[t] = weight state_dict.pop(k) return out_sd