import logging import math from typing import Dict, Optional import numpy as np import torch import torch.nn as nn from .. import attention from einops import rearrange, repeat from .util import timestep_embedding import comfy.ops import comfy.ldm.common_dit def default(x, y): if x is not None: return x return y class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, norm_layer=None, bias=True, drop=0., use_conv=False, dtype=None, device=None, operations=None, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features drop_probs = drop linear_layer = partial(operations.Conv2d, kernel_size=1) if use_conv else operations.Linear self.fc1 = linear_layer(in_features, hidden_features, bias=bias, dtype=dtype, device=device) self.act = act_layer() self.drop1 = nn.Dropout(drop_probs) self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() self.fc2 = linear_layer(hidden_features, out_features, bias=bias, dtype=dtype, device=device) self.drop2 = nn.Dropout(drop_probs) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.norm(x) x = self.fc2(x) x = self.drop2(x) return x class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding """ dynamic_img_pad: torch.jit.Final[bool] def __init__( self, img_size: Optional[int] = 224, patch_size: int = 16, in_chans: int = 3, embed_dim: int = 768, norm_layer = None, flatten: bool = True, bias: bool = True, strict_img_size: bool = True, dynamic_img_pad: bool = True, padding_mode='circular', dtype=None, device=None, operations=None, ): super().__init__() self.patch_size = (patch_size, patch_size) self.padding_mode = padding_mode if img_size is not None: self.img_size = (img_size, img_size) self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)]) self.num_patches = self.grid_size[0] * self.grid_size[1] else: self.img_size = None self.grid_size = None self.num_patches = None # flatten spatial dim and transpose to channels last, kept for bwd compat self.flatten = flatten self.strict_img_size = strict_img_size self.dynamic_img_pad = dynamic_img_pad self.proj = operations.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, dtype=dtype, device=device) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): B, C, H, W = x.shape # if self.img_size is not None: # if self.strict_img_size: # _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).") # _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).") # elif not self.dynamic_img_pad: # _assert( # H % self.patch_size[0] == 0, # f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})." # ) # _assert( # W % self.patch_size[1] == 0, # f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})." # ) if self.dynamic_img_pad: x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size, padding_mode=self.padding_mode) x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # NCHW -> NLC x = self.norm(x) return x def modulate(x, shift, scale): if shift is None: shift = torch.zeros_like(scale) return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) ################################################################################# # Sine/Cosine Positional Embedding Functions # ################################################################################# def get_2d_sincos_pos_embed( embed_dim, grid_size, cls_token=False, extra_tokens=0, scaling_factor=None, offset=None, ): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) if scaling_factor is not None: grid = grid / scaling_factor if offset is not None: grid = grid - offset grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate( [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0 ) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb def get_1d_sincos_pos_embed_from_grid_torch(embed_dim, pos, device=None, dtype=torch.float32): omega = torch.arange(embed_dim // 2, device=device, dtype=dtype) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = torch.sin(out) # (M, D/2) emb_cos = torch.cos(out) # (M, D/2) emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D) return emb def get_2d_sincos_pos_embed_torch(embed_dim, w, h, val_center=7.5, val_magnitude=7.5, device=None, dtype=torch.float32): small = min(h, w) val_h = (h / small) * val_magnitude val_w = (w / small) * val_magnitude grid_h, grid_w = torch.meshgrid(torch.linspace(-val_h + val_center, val_h + val_center, h, device=device, dtype=dtype), torch.linspace(-val_w + val_center, val_w + val_center, w, device=device, dtype=dtype), indexing='ij') emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype) emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype) emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D) return emb ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None): super().__init__() self.mlp = nn.Sequential( operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device), nn.SiLU(), operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), ) self.frequency_embedding_size = frequency_embedding_size def forward(self, t, dtype, **kwargs): t_freq = timestep_embedding(t, self.frequency_embedding_size).to(dtype) t_emb = self.mlp(t_freq) return t_emb class VectorEmbedder(nn.Module): """ Embeds a flat vector of dimension input_dim """ def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None, operations=None): super().__init__() self.mlp = nn.Sequential( operations.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device), nn.SiLU(), operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), ) def forward(self, x: torch.Tensor) -> torch.Tensor: emb = self.mlp(x) return emb ################################################################################# # Core DiT Model # ################################################################################# def split_qkv(qkv, head_dim): qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0) return qkv[0], qkv[1], qkv[2] def optimized_attention(qkv, num_heads): return attention.optimized_attention(qkv[0], qkv[1], qkv[2], num_heads) class SelfAttention(nn.Module): ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_scale: Optional[float] = None, proj_drop: float = 0.0, attn_mode: str = "xformers", pre_only: bool = False, qk_norm: Optional[str] = None, rmsnorm: bool = False, dtype=None, device=None, operations=None, ): super().__init__() self.num_heads = num_heads self.head_dim = dim // num_heads self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) if not pre_only: self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) self.proj_drop = nn.Dropout(proj_drop) assert attn_mode in self.ATTENTION_MODES self.attn_mode = attn_mode self.pre_only = pre_only if qk_norm == "rms": self.ln_q = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) self.ln_k = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) elif qk_norm == "ln": self.ln_q = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) self.ln_k = operations.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) elif qk_norm is None: self.ln_q = nn.Identity() self.ln_k = nn.Identity() else: raise ValueError(qk_norm) def pre_attention(self, x: torch.Tensor) -> torch.Tensor: B, L, C = x.shape qkv = self.qkv(x) q, k, v = split_qkv(qkv, self.head_dim) q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1) k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1) return (q, k, v) def post_attention(self, x: torch.Tensor) -> torch.Tensor: assert not self.pre_only x = self.proj(x) x = self.proj_drop(x) return x def forward(self, x: torch.Tensor) -> torch.Tensor: qkv = self.pre_attention(x) x = optimized_attention( qkv, num_heads=self.num_heads ) x = self.post_attention(x) return x class RMSNorm(torch.nn.Module): def __init__( self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6, device=None, dtype=None ): """ Initialize the RMSNorm normalization layer. Args: dim (int): The dimension of the input tensor. eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. Attributes: eps (float): A small value added to the denominator for numerical stability. weight (nn.Parameter): Learnable scaling parameter. """ super().__init__() self.eps = eps self.learnable_scale = elementwise_affine if self.learnable_scale: self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype)) else: self.register_parameter("weight", None) def _norm(self, x): """ Apply the RMSNorm normalization to the input tensor. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The normalized tensor. """ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): """ Forward pass through the RMSNorm layer. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The output tensor after applying RMSNorm. """ x = self._norm(x) if self.learnable_scale: return x * self.weight.to(device=x.device, dtype=x.dtype) else: return x class SwiGLUFeedForward(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int, ffn_dim_multiplier: Optional[float] = None, ): """ Initialize the FeedForward module. Args: dim (int): Input dimension. hidden_dim (int): Hidden dimension of the feedforward layer. multiple_of (int): Value to ensure hidden dimension is a multiple of this value. ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. Attributes: w1 (ColumnParallelLinear): Linear transformation for the first layer. w2 (RowParallelLinear): Linear transformation for the second layer. w3 (ColumnParallelLinear): Linear transformation for the third layer. """ super().__init__() hidden_dim = int(2 * hidden_dim / 3) # custom dim factor multiplier if ffn_dim_multiplier is not None: hidden_dim = int(ffn_dim_multiplier * hidden_dim) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = nn.Linear(dim, hidden_dim, bias=False) self.w2 = nn.Linear(hidden_dim, dim, bias=False) self.w3 = nn.Linear(dim, hidden_dim, bias=False) def forward(self, x): return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x)) class DismantledBlock(nn.Module): """ A DiT block with gated adaptive layer norm (adaLN) conditioning. """ ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float = 4.0, attn_mode: str = "xformers", qkv_bias: bool = False, pre_only: bool = False, rmsnorm: bool = False, scale_mod_only: bool = False, swiglu: bool = False, qk_norm: Optional[str] = None, dtype=None, device=None, operations=None, **block_kwargs, ): super().__init__() assert attn_mode in self.ATTENTION_MODES if not rmsnorm: self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) else: self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = SelfAttention( dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, attn_mode=attn_mode, pre_only=pre_only, qk_norm=qk_norm, rmsnorm=rmsnorm, dtype=dtype, device=device, operations=operations ) if not pre_only: if not rmsnorm: self.norm2 = operations.LayerNorm( hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device ) else: self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) if not pre_only: if not swiglu: self.mlp = Mlp( in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=lambda: nn.GELU(approximate="tanh"), drop=0, dtype=dtype, device=device, operations=operations ) else: self.mlp = SwiGLUFeedForward( dim=hidden_size, hidden_dim=mlp_hidden_dim, multiple_of=256, ) self.scale_mod_only = scale_mod_only if not scale_mod_only: n_mods = 6 if not pre_only else 2 else: n_mods = 4 if not pre_only else 1 self.adaLN_modulation = nn.Sequential( nn.SiLU(), operations.Linear(hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device) ) self.pre_only = pre_only def pre_attention(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: if not self.pre_only: if not self.scale_mod_only: ( shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp, ) = self.adaLN_modulation(c).chunk(6, dim=1) else: shift_msa = None shift_mlp = None ( scale_msa, gate_msa, scale_mlp, gate_mlp, ) = self.adaLN_modulation( c ).chunk(4, dim=1) qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) return qkv, ( x, gate_msa, shift_mlp, scale_mlp, gate_mlp, ) else: if not self.scale_mod_only: ( shift_msa, scale_msa, ) = self.adaLN_modulation( c ).chunk(2, dim=1) else: shift_msa = None scale_msa = self.adaLN_modulation(c) qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) return qkv, None def post_attention(self, attn, x, gate_msa, shift_mlp, scale_mlp, gate_mlp): assert not self.pre_only x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn) x = x + gate_mlp.unsqueeze(1) * self.mlp( modulate(self.norm2(x), shift_mlp, scale_mlp) ) return x def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: assert not self.pre_only qkv, intermediates = self.pre_attention(x, c) attn = optimized_attention( qkv, num_heads=self.attn.num_heads, ) return self.post_attention(attn, *intermediates) def block_mixing(*args, use_checkpoint=True, **kwargs): if use_checkpoint: return torch.utils.checkpoint.checkpoint( _block_mixing, *args, use_reentrant=False, **kwargs ) else: return _block_mixing(*args, **kwargs) def _block_mixing(context, x, context_block, x_block, c): context_qkv, context_intermediates = context_block.pre_attention(context, c) x_qkv, x_intermediates = x_block.pre_attention(x, c) o = [] for t in range(3): o.append(torch.cat((context_qkv[t], x_qkv[t]), dim=1)) qkv = tuple(o) attn = optimized_attention( qkv, num_heads=x_block.attn.num_heads, ) context_attn, x_attn = ( attn[:, : context_qkv[0].shape[1]], attn[:, context_qkv[0].shape[1] :], ) if not context_block.pre_only: context = context_block.post_attention(context_attn, *context_intermediates) else: context = None x = x_block.post_attention(x_attn, *x_intermediates) return context, x class JointBlock(nn.Module): """just a small wrapper to serve as a fsdp unit""" def __init__( self, *args, **kwargs, ): super().__init__() pre_only = kwargs.pop("pre_only") qk_norm = kwargs.pop("qk_norm", None) self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs) self.x_block = DismantledBlock(*args, pre_only=False, qk_norm=qk_norm, **kwargs) def forward(self, *args, **kwargs): return block_mixing( *args, context_block=self.context_block, x_block=self.x_block, **kwargs ) class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__( self, hidden_size: int, patch_size: int, out_channels: int, total_out_channels: Optional[int] = None, dtype=None, device=None, operations=None, ): super().__init__() self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.linear = ( operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) if (total_out_channels is None) else operations.Linear(hidden_size, total_out_channels, bias=True, dtype=dtype, device=device) ) self.adaLN_modulation = nn.Sequential( nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device) ) def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class SelfAttentionContext(nn.Module): def __init__(self, dim, heads=8, dim_head=64, dtype=None, device=None, operations=None): super().__init__() dim_head = dim // heads inner_dim = dim self.heads = heads self.dim_head = dim_head self.qkv = operations.Linear(dim, dim * 3, bias=True, dtype=dtype, device=device) self.proj = operations.Linear(inner_dim, dim, dtype=dtype, device=device) def forward(self, x): qkv = self.qkv(x) q, k, v = split_qkv(qkv, self.dim_head) x = optimized_attention((q.reshape(q.shape[0], q.shape[1], -1), k, v), self.heads) return self.proj(x) class ContextProcessorBlock(nn.Module): def __init__(self, context_size, dtype=None, device=None, operations=None): super().__init__() self.norm1 = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.attn = SelfAttentionContext(context_size, dtype=dtype, device=device, operations=operations) self.norm2 = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.mlp = Mlp(in_features=context_size, hidden_features=(context_size * 4), act_layer=lambda: nn.GELU(approximate="tanh"), drop=0, dtype=dtype, device=device, operations=operations) def forward(self, x): x += self.attn(self.norm1(x)) x += self.mlp(self.norm2(x)) return x class ContextProcessor(nn.Module): def __init__(self, context_size, num_layers, dtype=None, device=None, operations=None): super().__init__() self.layers = torch.nn.ModuleList([ContextProcessorBlock(context_size, dtype=dtype, device=device, operations=operations) for i in range(num_layers)]) self.norm = operations.LayerNorm(context_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) def forward(self, x): for i, l in enumerate(self.layers): x = l(x) return self.norm(x) class MMDiT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_size: int = 32, patch_size: int = 2, in_channels: int = 4, depth: int = 28, # hidden_size: Optional[int] = None, # num_heads: Optional[int] = None, mlp_ratio: float = 4.0, learn_sigma: bool = False, adm_in_channels: Optional[int] = None, context_embedder_config: Optional[Dict] = None, compile_core: bool = False, use_checkpoint: bool = False, register_length: int = 0, attn_mode: str = "torch", rmsnorm: bool = False, scale_mod_only: bool = False, swiglu: bool = False, out_channels: Optional[int] = None, pos_embed_scaling_factor: Optional[float] = None, pos_embed_offset: Optional[float] = None, pos_embed_max_size: Optional[int] = None, num_patches = None, qk_norm: Optional[str] = None, qkv_bias: bool = True, context_processor_layers = None, context_size = 4096, num_blocks = None, final_layer = True, dtype = None, #TODO device = None, operations = None, ): super().__init__() self.dtype = dtype self.learn_sigma = learn_sigma self.in_channels = in_channels default_out_channels = in_channels * 2 if learn_sigma else in_channels self.out_channels = default(out_channels, default_out_channels) self.patch_size = patch_size self.pos_embed_scaling_factor = pos_embed_scaling_factor self.pos_embed_offset = pos_embed_offset self.pos_embed_max_size = pos_embed_max_size # hidden_size = default(hidden_size, 64 * depth) # num_heads = default(num_heads, hidden_size // 64) # apply magic --> this defines a head_size of 64 self.hidden_size = 64 * depth num_heads = depth if num_blocks is None: num_blocks = depth self.depth = depth self.num_heads = num_heads self.x_embedder = PatchEmbed( input_size, patch_size, in_channels, self.hidden_size, bias=True, strict_img_size=self.pos_embed_max_size is None, dtype=dtype, device=device, operations=operations ) self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations) self.y_embedder = None if adm_in_channels is not None: assert isinstance(adm_in_channels, int) self.y_embedder = VectorEmbedder(adm_in_channels, self.hidden_size, dtype=dtype, device=device, operations=operations) if context_processor_layers is not None: self.context_processor = ContextProcessor(context_size, context_processor_layers, dtype=dtype, device=device, operations=operations) else: self.context_processor = None self.context_embedder = nn.Identity() if context_embedder_config is not None: if context_embedder_config["target"] == "torch.nn.Linear": self.context_embedder = operations.Linear(**context_embedder_config["params"], dtype=dtype, device=device) self.register_length = register_length if self.register_length > 0: self.register = nn.Parameter(torch.randn(1, register_length, self.hidden_size, dtype=dtype, device=device)) # num_patches = self.x_embedder.num_patches # Will use fixed sin-cos embedding: # just use a buffer already if num_patches is not None: self.register_buffer( "pos_embed", torch.empty(1, num_patches, self.hidden_size, dtype=dtype, device=device), ) else: self.pos_embed = None self.use_checkpoint = use_checkpoint self.joint_blocks = nn.ModuleList( [ JointBlock( self.hidden_size, num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, attn_mode=attn_mode, pre_only=(i == num_blocks - 1) and final_layer, rmsnorm=rmsnorm, scale_mod_only=scale_mod_only, swiglu=swiglu, qk_norm=qk_norm, dtype=dtype, device=device, operations=operations ) for i in range(num_blocks) ] ) if final_layer: self.final_layer = FinalLayer(self.hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations) if compile_core: assert False self.forward_core_with_concat = torch.compile(self.forward_core_with_concat) def cropped_pos_embed(self, hw, device=None): p = self.x_embedder.patch_size[0] h, w = hw # patched size h = (h + 1) // p w = (w + 1) // p if self.pos_embed is None: return get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=device) assert self.pos_embed_max_size is not None assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size) assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size) top = (self.pos_embed_max_size - h) // 2 left = (self.pos_embed_max_size - w) // 2 spatial_pos_embed = rearrange( self.pos_embed, "1 (h w) c -> 1 h w c", h=self.pos_embed_max_size, w=self.pos_embed_max_size, ) spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :] spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c") # print(spatial_pos_embed, top, left, h, w) # # t = get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, 7.875, 7.875, device=device) #matches exactly for 1024 res # t = get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, 7.5, 7.5, device=device) #scales better # # print(t) # return t return spatial_pos_embed def unpatchify(self, x, hw=None): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] if hw is None: h = w = int(x.shape[1] ** 0.5) else: h, w = hw h = (h + 1) // p w = (w + 1) // p assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum("nhwpqc->nchpwq", x) imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) return imgs def forward_core_with_concat( self, x: torch.Tensor, c_mod: torch.Tensor, context: Optional[torch.Tensor] = None, control = None, ) -> torch.Tensor: if self.register_length > 0: context = torch.cat( ( repeat(self.register, "1 ... -> b ...", b=x.shape[0]), default(context, torch.Tensor([]).type_as(x)), ), 1, ) # context is B, L', D # x is B, L, D blocks = len(self.joint_blocks) for i in range(blocks): context, x = self.joint_blocks[i]( context, x, c=c_mod, use_checkpoint=self.use_checkpoint, ) if control is not None: control_o = control.get("output") if i < len(control_o): add = control_o[i] if add is not None: x += add x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels) return x def forward( self, x: torch.Tensor, t: torch.Tensor, y: Optional[torch.Tensor] = None, context: Optional[torch.Tensor] = None, control = None, ) -> torch.Tensor: """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ if self.context_processor is not None: context = self.context_processor(context) hw = x.shape[-2:] x = self.x_embedder(x) + comfy.ops.cast_to_input(self.cropped_pos_embed(hw, device=x.device), x) c = self.t_embedder(t, dtype=x.dtype) # (N, D) if y is not None and self.y_embedder is not None: y = self.y_embedder(y) # (N, D) c = c + y # (N, D) if context is not None: context = self.context_embedder(context) x = self.forward_core_with_concat(x, c, context, control) x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W) return x[:,:,:hw[-2],:hw[-1]] class OpenAISignatureMMDITWrapper(MMDiT): def forward( self, x: torch.Tensor, timesteps: torch.Tensor, context: Optional[torch.Tensor] = None, y: Optional[torch.Tensor] = None, control = None, **kwargs, ) -> torch.Tensor: return super().forward(x, timesteps, context=context, y=y, control=control)