|
|
|
from ragatouille import RAGPretrainedModel |
|
import subprocess |
|
import json |
|
import firebase_admin |
|
from firebase_admin import credentials, firestore |
|
import logging |
|
from pathlib import Path |
|
from time import perf_counter |
|
from datetime import datetime |
|
import gradio as gr |
|
from jinja2 import Environment, FileSystemLoader |
|
import numpy as np |
|
from sentence_transformers import CrossEncoder |
|
|
|
from backend.query_llm import generate_hf, generate_openai |
|
from backend.semantic_search import table, retriever |
|
|
|
VECTOR_COLUMN_NAME = "vector" |
|
TEXT_COLUMN_NAME = "text" |
|
|
|
proj_dir = Path(__file__).parent |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) |
|
|
|
|
|
template = env.get_template('template.j2') |
|
template_html = env.get_template('template_html.j2') |
|
service_account_key='firebase.json' |
|
|
|
cred = credentials.Certificate(service_account_key) |
|
|
|
firebase_admin.initialize_app(cred) |
|
|
|
|
|
db = firestore.client() |
|
|
|
|
|
examples = ['when i have to report to constituency?','what is social media and what are rules related to it for expenditure monitoring ', |
|
'how many reports to be submitted by Expenditure observer with annexure names ?','what is expenditure limits for parlimentary constituency and assembly constituency' |
|
] |
|
|
|
collection_name = 'Nirvachana' |
|
field_name = 'message_count' |
|
|
|
|
|
def get_and_increment_value_count(db , collection_name, field_name): |
|
""" |
|
Retrieves a value count from the specified Firestore collection and field, |
|
increments it by 1, and updates the field with the new value.""" |
|
collection_ref = db.collection(collection_name) |
|
doc_ref = collection_ref.document('count_doc') |
|
|
|
|
|
try: |
|
with db.transaction() as transaction: |
|
|
|
current_count_doc = doc_ref.get() |
|
current_count_data = current_count_doc.to_dict() |
|
if current_count_data: |
|
current_count = current_count_data.get(field_name, 0) |
|
else: |
|
current_count = 0 |
|
|
|
new_count = current_count + 1 |
|
|
|
transaction.set(doc_ref, {field_name: new_count}) |
|
return new_count |
|
except Exception as e: |
|
print(f"Error retrieving and updating value count: {e}") |
|
return None |
|
|
|
def update_count_html(): |
|
usage_count = get_and_increment_value_count(db ,collection_name, field_name) |
|
ccount_html = gr.HTML(value=f""" |
|
<div style="display: flex; justify-content: flex-end;"> |
|
<span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span> |
|
<span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span> |
|
</div> |
|
""") |
|
return count_html |
|
|
|
def store_message(db,query,answer,cross_encoder): |
|
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
|
|
new_completion= db.collection('Nirvachana').document(f"chatlogs_{timestamp}") |
|
new_completion.set({ |
|
'query': query, |
|
'answer':answer, |
|
'created_time': firestore.SERVER_TIMESTAMP, |
|
'embedding': cross_encoder, |
|
'title': 'Expenditure observer bot' |
|
}) |
|
|
|
|
|
def add_text(history, text): |
|
history = [] if history is None else history |
|
history = history + [(text, None)] |
|
return history, gr.Textbox(value="", interactive=False) |
|
|
|
|
|
def bot(history, cross_encoder): |
|
top_rerank = 15 |
|
top_k_rank = 10 |
|
query = history[-1][0] |
|
|
|
if not query: |
|
gr.Warning("Please submit a non-empty string as a prompt") |
|
raise ValueError("Empty string was submitted") |
|
|
|
logger.warning('Retrieving documents...') |
|
|
|
|
|
if cross_encoder=='(HIGH ACCURATE) ColBERT': |
|
gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') |
|
RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") |
|
RAG_db=RAG.from_index('.ragatouille/colbert/indexes/mockingbird') |
|
documents_full=RAG_db.search(query,k=top_k_rank) |
|
|
|
documents=[item['content'] for item in documents_full] |
|
|
|
prompt = template.render(documents=documents, query=query) |
|
prompt_html = template_html.render(documents=documents, query=query) |
|
|
|
generate_fn = generate_hf |
|
|
|
history[-1][1] = "" |
|
for character in generate_fn(prompt, history[:-1]): |
|
history[-1][1] = character |
|
print('Final history is ',history) |
|
yield history, prompt_html |
|
store_message(db,history[-1][0],history[-1][1],cross_encoder) |
|
else: |
|
|
|
document_start = perf_counter() |
|
|
|
query_vec = retriever.encode(query) |
|
logger.warning(f'Finished query vec') |
|
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) |
|
|
|
|
|
|
|
logger.warning(f'Finished search') |
|
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() |
|
documents = [doc[TEXT_COLUMN_NAME] for doc in documents] |
|
logger.warning(f'start cross encoder {len(documents)}') |
|
|
|
query_doc_pair = [[query, doc] for doc in documents] |
|
if cross_encoder=='(FAST) MiniLM-L6v2' : |
|
cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') |
|
elif cross_encoder=='(ACCURATE) BGE reranker': |
|
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') |
|
|
|
cross_scores = cross_encoder1.predict(query_doc_pair) |
|
sim_scores_argsort = list(reversed(np.argsort(cross_scores))) |
|
logger.warning(f'Finished cross encoder {len(documents)}') |
|
|
|
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] |
|
logger.warning(f'num documents {len(documents)}') |
|
|
|
document_time = perf_counter() - document_start |
|
logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') |
|
|
|
|
|
prompt = template.render(documents=documents, query=query) |
|
prompt_html = template_html.render(documents=documents, query=query) |
|
|
|
generate_fn = generate_hf |
|
|
|
history[-1][1] = "" |
|
for character in generate_fn(prompt, history[:-1]): |
|
history[-1][1] = character |
|
print('Final history is ',history) |
|
yield history, prompt_html |
|
store_message(db,history[-1][0],history[-1][1],cross_encoder) |
|
|
|
|
|
with gr.Blocks(theme='Insuz/SimpleIndigo') as demo: |
|
gr.HTML(value="""<div style="display: flex; align-items: center; justify-content: space-between;"> |
|
<h1 style="color: #008000">NIRVACHANA - <span style="color: #008000">Expenditure Observer AI Assistant</span></h1> |
|
<img src='logo.png' alt="Chatbot" width="50" height="50" /> |
|
</div>""",elem_id='heading') |
|
gr.HTML(value=f""" |
|
<p style="font-family: sans-serif; font-size: 16px;"> |
|
A free chat bot assistant for Expenditure Observers on Compendium on Election Expenditure Monitoring using Open source LLMs. <br> |
|
The bot can answer questions in natural language, taking relevant extracts from the ECI document which can be accessed <a href="https://www.eci.gov.in/eci-backend/public/api/download?url=LMAhAK6sOPBp%2FNFF0iRfXbEB1EVSLT41NNLRjYNJJP1KivrUxbfqkDatmHy12e%2Fzk1vx4ptJpQsKYHA87guoLjnPUWtHeZgKtEqs%2FyzfTTYIC0newOHHOjl1rl0u3mJBSIq%2Fi7zDsrcP74v%2FKr8UNw%3D%3D" style="color: #00008B; text-decoration: none;">CLICK HERE !</a>. |
|
</p> |
|
""", elem_id='Sub-heading') |
|
usage_count = get_and_increment_value_count(db,collection_name, field_name) |
|
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 16px;">Developed by Ramesh M IRS (C& CE) (R-19187), Suggestions may be sent to <a href="mailto:mramesh.irs@gov.in" style="color: #00008B; font-style: italic;">mramesh.irs@gov.in</a>.</p>""", elem_id='Sub-heading1 ') |
|
count_html = gr.HTML(value=f""" |
|
<div style="display: flex; justify-content: flex-end;"> |
|
<span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span> |
|
<span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span> |
|
</div> |
|
""") |
|
|
|
chatbot = gr.Chatbot( |
|
[], |
|
elem_id="chatbot", |
|
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', |
|
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), |
|
bubble_full_width=False, |
|
show_copy_button=True, |
|
show_share_button=True, |
|
) |
|
|
|
with gr.Row(): |
|
txt = gr.Textbox( |
|
scale=3, |
|
show_label=False, |
|
placeholder="Enter text and press enter", |
|
container=False, |
|
) |
|
txt_btn = gr.Button(value="Submit text", scale=1) |
|
|
|
cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)") |
|
|
|
prompt_html = gr.HTML() |
|
|
|
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( |
|
bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(update_count_html,[],[count_html]) |
|
|
|
|
|
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) |
|
|
|
|
|
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( |
|
bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(update_count_html,[],[count_html]) |
|
|
|
|
|
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) |
|
|
|
|
|
gr.Examples(examples, txt) |
|
|
|
demo.queue() |
|
demo.launch(debug=True) |
|
|