import requests import gradio as gr from ragatouille import RAGPretrainedModel import logging from pathlib import Path from time import perf_counter from sentence_transformers import CrossEncoder from huggingface_hub import InferenceClient from jinja2 import Environment, FileSystemLoader import numpy as np from os import getenv from backend.query_llm import generate_hf, generate_qwen from backend.semantic_search import table, retriever from huggingface_hub import InferenceClient # Bhashini API translation function api_key = getenv('API_KEY') user_id = getenv('USER_ID') def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict: """Translates text from source language to target language using the Bhashini API.""" if not text.strip(): print('Input text is empty. Please provide valid text for translation.') return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None} else: print('Input text - ',text) print(f'Starting translation process from {from_code} to {to_code}...') print(f'Starting translation process from {from_code} to {to_code}...') gr.Warning(f'Translating to {to_code}...') url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline' headers = { "Content-Type": "application/json", "userID": user_id, "ulcaApiKey": api_key } payload = { "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}], "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"} } print('Sending initial request to get the pipeline...') response = requests.post(url, json=payload, headers=headers) if response.status_code != 200: print(f'Error in initial request: {response.status_code}') return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None} print('Initial request successful, processing response...') response_data = response.json() service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"] callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"] print(f'Service ID: {service_id}, Callback URL: {callback_url}') headers2 = { "Content-Type": "application/json", response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"] } compute_payload = { "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}], "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]} } print(f'Sending translation request with text: "{text}"') compute_response = requests.post(callback_url, json=compute_payload, headers=headers2) if compute_response.status_code != 200: print(f'Error in translation request: {compute_response.status_code}') return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None} print('Translation request successful, processing translation...') compute_response_data = compute_response.json() translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"] print(f'Translation successful. Translated content: "{translated_content}"') return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content} # Existing chatbot functions VECTOR_COLUMN_NAME = "vector" TEXT_COLUMN_NAME = "text" HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") proj_dir = Path(__file__).parent logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN) env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) template = env.get_template('template.j2') template_html = env.get_template('template_html.j2') # def add_text(history, text): # history = [] if history is None else history # history = history + [(text, None)] # return history, gr.Textbox(value="", interactive=False) def bot(history, cross_encoder): top_rerank = 25 top_k_rank = 20 query = history[-1][0] if history else '' print('\nQuery: ',query ) print('\nHistory:',history) if not query: gr.Warning("Please submit a non-empty string as a prompt") raise ValueError("Empty string was submitted") logger.warning('Retrieving documents...') if cross_encoder == '(HIGH ACCURATE) ColBERT': gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') documents_full = RAG_db.search(query, k=top_k_rank) documents = [item['content'] for item in documents_full] prompt = template.render(documents=documents, query=query) prompt_html = template_html.render(documents=documents, query=query) generate_fn = generate_hf history[-1][1] = "" for character in generate_fn(prompt, history[:-1]): history[-1][1] = character yield history, prompt_html else: document_start = perf_counter() query_vec = retriever.encode(query) doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() documents = [doc[TEXT_COLUMN_NAME] for doc in documents] query_doc_pair = [[query, doc] for doc in documents] if cross_encoder == '(FAST) MiniLM-L6v2': cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') elif cross_encoder == '(ACCURATE) BGE reranker': cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') cross_scores = cross_encoder1.predict(query_doc_pair) sim_scores_argsort = list(reversed(np.argsort(cross_scores))) documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] document_time = perf_counter() - document_start prompt = template.render(documents=documents, query=query) prompt_html = template_html.render(documents=documents, query=query) #generate_fn = generate_hf generate_fn=generate_qwen # Create a new history entry instead of modifying the tuple directly new_history = history[:-1] + [ (prompt, "") ] # query replaced prompt output='' # for character in generate_fn(prompt, history[:-1]): # #new_history[-1] = (query, character) # output+=character output=generate_fn(prompt, history[:-1]) print('Output:',output) new_history[-1] = (prompt, output) #query replaced with prompt print('New History',new_history) #print('prompt html',prompt_html)# Update the last tuple with new text history_list = list(history[-1]) history_list[1] = output # Assuming `character` is what you want to assign # Update the history with the modified list converted back to a tuple history[-1] = tuple(history_list) #history[-1][1] = character # yield new_history, prompt_html yield history, prompt_html # new_history,prompt_html # history[-1][1] = "" # for character in generate_fn(prompt, history[:-1]): # history[-1][1] = character # yield history, prompt_html #def translate_text(response_text, selected_language): def translate_text(selected_language,history): iso_language_codes = { "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur", "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr", "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni", "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or" } to_code = iso_language_codes[selected_language] response_text = history[-1][1] if history else '' print('response_text for translation',response_text) translation = bhashini_translate(response_text, to_code=to_code) return translation['translated_content'] # Gradio interface with gr.Blocks(theme='gradio/soft') as CHATBOT: history_state = gr.State([]) with gr.Row(): with gr.Column(scale=10): gr.HTML(value="""
Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers
""") gr.HTML(value=f"""Developed by NCTC,Mumbai. Suggestions may be sent to nctc-admin@gov.in.
""") with gr.Column(scale=3): gr.Image(value='logo.png', height=200, width=200) chatbot = gr.Chatbot( [], elem_id="chatbot", avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), bubble_full_width=False, show_copy_button=True, show_share_button=True, ) with gr.Row(): txt = gr.Textbox( scale=3, show_label=False, placeholder="Enter text and press enter", container=False, ) txt_btn = gr.Button(value="Submit text", scale=1) cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)") language_dropdown = gr.Dropdown( choices=[ "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi", "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali", "Gujarati", "Odia" ], value="Hindi", # default to Hindi label="Select Language for Translation" ) prompt_html = gr.HTML() translated_textbox = gr.Textbox(label="Translated Response") def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown): print('History state',history_state) history = history_state history.append((txt, "")) #history_state.value=(history) # Call bot function # bot_output = list(bot(history, cross_encoder)) bot_output = next(bot(history, cross_encoder)) print('bot_output',bot_output) #history, prompt_html = bot_output[-1] history, prompt_html = bot_output print('History',history) # Update the history state history_state[:] = history # Translate text translated_text = translate_text(language_dropdown, history) return history, prompt_html, translated_text txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox]) txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox]) examples = ['CAN U SAY THE DIFFERENCES BETWEEN METALS AND NON METALS?','WHAT IS IONIC BOND?', 'EXPLAIN ASEXUAL REPRODUCTION', gr.Examples(examples, txt) # Launch the Gradio application CHATBOT.launch(share=True,debug=True)