File size: 7,271 Bytes
02d63c6
 
b7362f5
 
 
 
 
02d63c6
b7362f5
02d63c6
b7362f5
 
 
 
 
 
 
02d63c6
 
 
b7362f5
 
 
 
 
 
 
 
 
 
 
 
02d63c6
b7362f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d63c6
 
b7362f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d63c6
 
b7362f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel 
from tdd_scheduler import TDDScheduler
from safetensors.torch import load_file
import spaces
from PIL import Image

SAFETY_CHECKER = False

loaded_acc = None
device = "cuda"
#device = "cuda" if torch.cuda.is_available() else "cpu"

ACC_lora={
    "TDD":"RED-AIGC/TDD/sdxl_tdd_wo_adv_lora.safetensors",
    "TDD_adv":"RED-AIGC/TDD/sdxl_tdd_lora_weights.safetensors",
}

if torch.cuda.is_available():
    base1 = UNet2DConditionModel.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", torch_dtype=torch.float16
    ).to(device)
    base2 = UNet2DConditionModel.from_pretrained(
        "frankjoshua/realvisxlV40_v40Bakedvae", subfolder="unet", torch_dtype=torch.float16
    ).to(device)
    pipe_sdxl = StableDiffusionXLPipeline.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0",
        unet=base1,
        torch_dtype=torch.float16,
        variant="fp16",
    ).to(device)

    tdd_lora = load_file(ACC_lora["TDD"])
    tdd_adv_lora = ACC_lora["TDD_adv"]
    pipe_sdxl.load_lora_weights(tdd_lora, adapter_name="TDD")
    pipe_sdxl.load_lora_weights(tdd_adv_lora, adapter_name="TDD_adv")
    pipe_sdxl.scheduler = TDDScheduler.from_config(pipe_sdxl.scheduler.config)

    pipe_sdxl_real = StableDiffusionXLPipeline.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0",
        unet=base2,
        torch_dtype=torch.float16,
        variant="fp16",
    ).to(device)
    pipe_sdxl_real.load_lora_weights(tdd_lora, adapter_name="TDD")
    pipe_sdxl_real.load_lora_weights(tdd_adv_lora, adapter_name="TDD_adv")
    pipe_sdxl_real.scheduler = TDDScheduler.from_config(pipe_sdxl.scheduler.config)

def update_base_model(ckpt):
    if torch.cuda.is_available():
        pipe_sdxl = StableDiffusionXLPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0",
            torch_dtype=torch.float16,
            variant="fp16",
        ).to(device)
    return pipe_sdxl


if SAFETY_CHECKER:
    from safety_checker import StableDiffusionSafetyChecker
    from transformers import CLIPFeatureExtractor

    safety_checker = StableDiffusionSafetyChecker.from_pretrained(
        "CompVis/stable-diffusion-safety-checker"
    ).to(device)
    feature_extractor = CLIPFeatureExtractor.from_pretrained(
        "openai/clip-vit-base-patch32"
    )

    def check_nsfw_images(
        images: list[Image.Image],
    ) -> tuple[list[Image.Image], list[bool]]:
        safety_checker_input = feature_extractor(images, return_tensors="pt").to(device)
        has_nsfw_concepts = safety_checker(
            images=[images], clip_input=safety_checker_input.pixel_values.to(device)
        )

        return images, has_nsfw_concepts


@spaces.GPU(enable_queue=True)
def generate_image(
    prompt,
    negative_prompt,
    ckpt,
    acc,
    num_inference_steps,
    guidance_scale,
    eta,
    seed,
    progress=gr.Progress(track_tqdm=True),
):
    global loaded_acc
    #pipe = pipe_sdxl #if mode == "sdxl" else pipe_sd15

    if ckpt == "Real":
        pipe = pipe_sdxl_real
    else:
        pipe = pipe_sdxl

    if loaded_acc != acc:
        #pipe.load_lora_weights(ACC_lora[acc], adapter_name=acc)
        pipe.set_adapters([acc], adapter_weights=[1.0])
        print(pipe.get_active_adapters())
        loaded_acc = acc

    results = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        eta=eta,
        generator=torch.Generator(device=pipe.device).manual_seed(seed),
    )

    if SAFETY_CHECKER:
        images, has_nsfw_concepts = check_nsfw_images(results.images)
        if any(has_nsfw_concepts):
            gr.Warning("NSFW content detected.")
            return Image.new("RGB", (512, 512))
        return images[0]
    return results.images[0]

css = """
h1 {
    text-align: center;
    display:block;
}
.gradio-container {
  max-width: 70.5rem !important;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(
        """
# ✨Target-Driven Distillation✨

Target-Driven Distillation (TDD) is a state-of-the-art consistency distillation model that largely accelerates the inference processes of diffusion models. Using its delicate strategies of *target timestep selection* and *decoupled guidance*, models distilled by TDD can generated highly detailed images with only a few steps.

[![arXiv](https://img.shields.io/badge/arXiv-coming%20soon-b31b1b.svg?logo=arxiv)](https://arxiv.org) [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/RedAIGC/TDD)
"""
    )
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    prompt = gr.Textbox(label="Prompt")
                with gr.Row():
                    negative_prompt = gr.Textbox(label="Negative Prompt")
                with gr.Row():
                    steps = gr.Slider(
                        label="Sampling Steps",
                        minimum=4,
                        maximum=8,
                        step=1,
                        value=4,
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="CFG Scale",
                        minimum=1,
                        maximum=4,
                        step=0.1,
                        value=2.0,
                    )
                with gr.Row():
                    eta = gr.Slider(
                        label="eta",
                        minimum=0,
                        maximum=0.3,
                        step=0.1,
                        value=0.2,
                    )
                with gr.Row():
                    seed = gr.Number(label="Seed", value=-1)

                with gr.Row():

                    ckpt = gr.Dropdown(
                        label="Base Model",
                        choices=["SDXL-1.0", "Real"],
                        value="SDXL-1.0",
                    )

                    acc = gr.Dropdown(
                        label="Accelerate Lora",
                        choices=["TDD", "TDD_adv"],
                        value="TDD_adv",
                    )

        with gr.Column(scale=1):
            with gr.Group():
                img = gr.Image(label="TDD Image", value="/share/wangcunzheng/test1.png")
                submit_sdxl = gr.Button("Run on SDXL")
    gr.Examples(
        examples=[
            ["A photo of a cat made of water.", "", "SDXL-1.0", "TDD_adv", 4, 1.7, 0.2, 546237],
            ["A photo of a dog made of water.", "", "SDXL-1.0", "TDD_adv", 4, 1.7, 0.2, 546237],

        ],
        inputs=[prompt, negative_prompt, ckpt, acc, steps, guidance_scale, eta, seed],
        outputs=[img],
        fn=generate_image,
        cache_examples="lazy",
    )

    gr.on(
        fn=generate_image,
        triggers=[ckpt.change, prompt.submit, submit_sdxl.click],
        inputs=[prompt, negative_prompt, ckpt, acc, steps, guidance_scale, eta, seed],
        outputs=[img],
    )

demo.queue(api_open=False).launch(show_api=False)