|
from diffusers import TCDScheduler, DPMSolverSinglestepScheduler |
|
from diffusers.schedulers.scheduling_tcd import * |
|
from diffusers.schedulers.scheduling_dpmsolver_singlestep import * |
|
|
|
class TDDScheduler(DPMSolverSinglestepScheduler): |
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[np.ndarray] = None, |
|
solver_order: int = 1, |
|
prediction_type: str = "epsilon", |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
sample_max_value: float = 1.0, |
|
algorithm_type: str = "dpmsolver++", |
|
solver_type: str = "midpoint", |
|
lower_order_final: bool = False, |
|
use_karras_sigmas: Optional[bool] = False, |
|
final_sigmas_type: Optional[str] = "zero", |
|
lambda_min_clipped: float = -float("inf"), |
|
variance_type: Optional[str] = None, |
|
tdd_train_step: int = 250, |
|
special_jump: bool = False, |
|
t_l: int = -1 |
|
): |
|
self.t_l = t_l |
|
self.special_jump = special_jump |
|
self.tdd_train_step = tdd_train_step |
|
if algorithm_type == "dpmsolver": |
|
deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead" |
|
deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message) |
|
|
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
self.alpha_t = torch.sqrt(self.alphas_cumprod) |
|
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) |
|
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) |
|
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
if algorithm_type not in ["dpmsolver", "dpmsolver++"]: |
|
if algorithm_type == "deis": |
|
self.register_to_config(algorithm_type="dpmsolver++") |
|
else: |
|
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}") |
|
if solver_type not in ["midpoint", "heun"]: |
|
if solver_type in ["logrho", "bh1", "bh2"]: |
|
self.register_to_config(solver_type="midpoint") |
|
else: |
|
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") |
|
|
|
if algorithm_type != "dpmsolver++" and final_sigmas_type == "zero": |
|
raise ValueError( |
|
f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please chooose `sigma_min` instead." |
|
) |
|
|
|
|
|
self.num_inference_steps = None |
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() |
|
self.timesteps = torch.from_numpy(timesteps) |
|
self.model_outputs = [None] * solver_order |
|
self.sample = None |
|
self.order_list = self.get_order_list(num_train_timesteps) |
|
self._step_index = None |
|
self._begin_index = None |
|
self.sigmas = self.sigmas.to("cpu") |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
self.num_inference_steps = num_inference_steps |
|
|
|
|
|
|
|
if True: |
|
original_steps=self.tdd_train_step |
|
k = 1000 / original_steps |
|
tcd_origin_timesteps = np.asarray(list(range(1, int(original_steps) + 1))) * k - 1 |
|
else: |
|
tcd_origin_timesteps = np.asarray(list(range(0, int(self.config.num_train_timesteps)))) |
|
|
|
tcd_origin_timesteps = tcd_origin_timesteps[::-1].copy() |
|
|
|
inference_indices = np.linspace(0, len(tcd_origin_timesteps), num=num_inference_steps, endpoint=False) |
|
inference_indices = np.floor(inference_indices).astype(np.int64) |
|
timesteps = tcd_origin_timesteps[inference_indices] |
|
if self.special_jump: |
|
if self.tdd_train_step == 50: |
|
|
|
print(timesteps) |
|
elif self.tdd_train_step == 250: |
|
if num_inference_steps == 5: |
|
timesteps = np.array([999., 875., 751., 499., 251.]) |
|
elif num_inference_steps == 6: |
|
timesteps = np.array([999., 875., 751., 627., 499., 251.]) |
|
elif num_inference_steps == 7: |
|
timesteps = np.array([999., 875., 751., 627., 499., 375., 251.]) |
|
|
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
if self.config.use_karras_sigmas: |
|
log_sigmas = np.log(sigmas) |
|
sigmas = np.flip(sigmas).copy() |
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) |
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() |
|
else: |
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) |
|
|
|
if self.config.final_sigmas_type == "sigma_min": |
|
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 |
|
elif self.config.final_sigmas_type == "zero": |
|
sigma_last = 0 |
|
else: |
|
raise ValueError( |
|
f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}" |
|
) |
|
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) |
|
|
|
self.sigmas = torch.from_numpy(sigmas).to(device=device) |
|
|
|
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) |
|
self.model_outputs = [None] * self.config.solver_order |
|
self.sample = None |
|
|
|
if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0: |
|
logger.warning( |
|
"Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`." |
|
) |
|
self.register_to_config(lower_order_final=True) |
|
|
|
if not self.config.lower_order_final and self.config.final_sigmas_type == "zero": |
|
logger.warning( |
|
" `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True." |
|
) |
|
self.register_to_config(lower_order_final=True) |
|
|
|
self.order_list = self.get_order_list(num_inference_steps) |
|
|
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
self.sigmas = self.sigmas.to("cpu") |
|
|
|
def set_timesteps_s(self, eta: float = 0.0): |
|
|
|
|
|
num_inference_steps = self.num_inference_steps |
|
device = self.timesteps.device |
|
if True: |
|
original_steps=self.tdd_train_step |
|
k = 1000 / original_steps |
|
tcd_origin_timesteps = np.asarray(list(range(1, int(original_steps) + 1))) * k - 1 |
|
else: |
|
tcd_origin_timesteps = np.asarray(list(range(0, int(self.config.num_train_timesteps)))) |
|
|
|
tcd_origin_timesteps = tcd_origin_timesteps[::-1].copy() |
|
|
|
inference_indices = np.linspace(0, len(tcd_origin_timesteps), num=num_inference_steps, endpoint=False) |
|
inference_indices = np.floor(inference_indices).astype(np.int64) |
|
timesteps = tcd_origin_timesteps[inference_indices] |
|
if self.special_jump: |
|
if self.tdd_train_step == 50: |
|
timesteps = np.array([999., 879., 759., 499., 259.]) |
|
elif self.tdd_train_step == 250: |
|
if num_inference_steps == 5: |
|
timesteps = np.array([999., 875., 751., 499., 251.]) |
|
elif num_inference_steps == 6: |
|
timesteps = np.array([999., 875., 751., 627., 499., 251.]) |
|
elif num_inference_steps == 7: |
|
timesteps = np.array([999., 875., 751., 627., 499., 375., 251.]) |
|
|
|
timesteps_s = np.floor((1 - eta) * timesteps).astype(np.int64) |
|
|
|
sigmas_s = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
if self.config.use_karras_sigmas: |
|
print("have not write") |
|
pass |
|
else: |
|
sigmas_s = np.interp(timesteps_s, np.arange(0, len(sigmas_s)), sigmas_s) |
|
|
|
if self.config.final_sigmas_type == "sigma_min": |
|
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 |
|
elif self.config.final_sigmas_type == "zero": |
|
sigma_last = 0 |
|
else: |
|
raise ValueError( |
|
f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}" |
|
) |
|
|
|
sigmas_s = np.concatenate([sigmas_s, [sigma_last]]).astype(np.float32) |
|
self.sigmas_s = torch.from_numpy(sigmas_s).to(device=device) |
|
self.timesteps_s = torch.from_numpy(timesteps_s).to(device=device, dtype=torch.int64) |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
eta: float, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
if self.step_index == 0: |
|
self.set_timesteps_s(eta) |
|
|
|
model_output = self.convert_model_output(model_output, sample=sample) |
|
for i in range(self.config.solver_order - 1): |
|
self.model_outputs[i] = self.model_outputs[i + 1] |
|
self.model_outputs[-1] = model_output |
|
|
|
order = self.order_list[self.step_index] |
|
|
|
|
|
|
|
while self.model_outputs[-order] is None: |
|
order -= 1 |
|
|
|
|
|
if order == 1: |
|
self.sample = sample |
|
|
|
prev_sample = self.singlestep_dpm_solver_update(self.model_outputs, sample=self.sample, order=order) |
|
|
|
if eta > 0: |
|
if self.step_index != self.num_inference_steps - 1: |
|
|
|
alpha_prod_s = self.alphas_cumprod[self.timesteps_s[self.step_index + 1]] |
|
alpha_prod_t_prev = self.alphas_cumprod[self.timesteps[self.step_index + 1]] |
|
|
|
noise = randn_tensor( |
|
model_output.shape, generator=generator, device=model_output.device, dtype=prev_sample.dtype |
|
) |
|
prev_sample = (alpha_prod_t_prev / alpha_prod_s).sqrt() * prev_sample + ( |
|
1 - alpha_prod_t_prev / alpha_prod_s |
|
).sqrt() * noise |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def dpm_solver_first_order_update( |
|
self, |
|
model_output: torch.FloatTensor, |
|
*args, |
|
sample: torch.FloatTensor = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) |
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None) |
|
if sample is None: |
|
if len(args) > 2: |
|
sample = args[2] |
|
else: |
|
raise ValueError(" missing `sample` as a required keyward argument") |
|
if timestep is not None: |
|
deprecate( |
|
"timesteps", |
|
"1.0.0", |
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
if prev_timestep is not None: |
|
deprecate( |
|
"prev_timestep", |
|
"1.0.0", |
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
sigma_t, sigma_s = self.sigmas_s[self.step_index + 1], self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s) |
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s = torch.log(alpha_s) - torch.log(sigma_s) |
|
h = lambda_t - lambda_s |
|
if self.config.algorithm_type == "dpmsolver++": |
|
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output |
|
elif self.config.algorithm_type == "dpmsolver": |
|
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output |
|
return x_t |
|
|
|
def singlestep_dpm_solver_second_order_update( |
|
self, |
|
model_output_list: List[torch.FloatTensor], |
|
*args, |
|
sample: torch.FloatTensor = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None) |
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None) |
|
if sample is None: |
|
if len(args) > 2: |
|
sample = args[2] |
|
else: |
|
raise ValueError(" missing `sample` as a required keyward argument") |
|
if timestep_list is not None: |
|
deprecate( |
|
"timestep_list", |
|
"1.0.0", |
|
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
if prev_timestep is not None: |
|
deprecate( |
|
"prev_timestep", |
|
"1.0.0", |
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
sigma_t, sigma_s0, sigma_s1 = ( |
|
self.sigmas_s[self.step_index + 1], |
|
self.sigmas[self.step_index], |
|
self.sigmas[self.step_index - 1], |
|
) |
|
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) |
|
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) |
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) |
|
|
|
m0, m1 = model_output_list[-1], model_output_list[-2] |
|
|
|
h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1 |
|
r0 = h_0 / h |
|
D0, D1 = m1, (1.0 / r0) * (m0 - m1) |
|
if self.config.algorithm_type == "dpmsolver++": |
|
|
|
if self.config.solver_type == "midpoint": |
|
x_t = ( |
|
(sigma_t / sigma_s1) * sample |
|
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 |
|
- 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 |
|
) |
|
elif self.config.solver_type == "heun": |
|
x_t = ( |
|
(sigma_t / sigma_s1) * sample |
|
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 |
|
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 |
|
) |
|
elif self.config.algorithm_type == "dpmsolver": |
|
|
|
if self.config.solver_type == "midpoint": |
|
x_t = ( |
|
(alpha_t / alpha_s1) * sample |
|
- (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 |
|
) |
|
elif self.config.solver_type == "heun": |
|
x_t = ( |
|
(alpha_t / alpha_s1) * sample |
|
- (sigma_t * (torch.exp(h) - 1.0)) * D0 |
|
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 |
|
) |
|
return x_t |
|
|
|
def singlestep_dpm_solver_update( |
|
self, |
|
model_output_list: List[torch.FloatTensor], |
|
*args, |
|
sample: torch.FloatTensor = None, |
|
order: int = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None) |
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None) |
|
if sample is None: |
|
if len(args) > 2: |
|
sample = args[2] |
|
else: |
|
raise ValueError(" missing`sample` as a required keyward argument") |
|
if order is None: |
|
if len(args) > 3: |
|
order = args[3] |
|
else: |
|
raise ValueError(" missing `order` as a required keyward argument") |
|
if timestep_list is not None: |
|
deprecate( |
|
"timestep_list", |
|
"1.0.0", |
|
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
if prev_timestep is not None: |
|
deprecate( |
|
"prev_timestep", |
|
"1.0.0", |
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
if order == 1: |
|
return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample) |
|
elif order == 2: |
|
return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample) |
|
else: |
|
raise ValueError(f"Order must be 1, 2, got {order}") |
|
|
|
def convert_model_output( |
|
self, |
|
model_output: torch.FloatTensor, |
|
*args, |
|
sample: torch.FloatTensor = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
""" |
|
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is |
|
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an |
|
integral of the data prediction model. |
|
|
|
<Tip> |
|
|
|
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise |
|
prediction and data prediction models. |
|
|
|
</Tip> |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from the learned diffusion model. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
The converted model output. |
|
""" |
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) |
|
if sample is None: |
|
if len(args) > 1: |
|
sample = args[1] |
|
else: |
|
raise ValueError("missing `sample` as a required keyward argument") |
|
if timestep is not None: |
|
deprecate( |
|
"timesteps", |
|
"1.0.0", |
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
if self.config.algorithm_type == "dpmsolver++": |
|
if self.config.prediction_type == "epsilon": |
|
|
|
if self.config.variance_type in ["learned_range"]: |
|
model_output = model_output[:, :3] |
|
sigma = self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
x0_pred = (sample - sigma_t * model_output) / alpha_t |
|
elif self.config.prediction_type == "sample": |
|
x0_pred = model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
sigma = self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
x0_pred = alpha_t * sample - sigma_t * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction` for the DPMSolverSinglestepScheduler." |
|
) |
|
|
|
if self.step_index <= self.t_l: |
|
if self.config.thresholding: |
|
x0_pred = self._threshold_sample(x0_pred) |
|
|
|
return x0_pred |
|
|
|
elif self.config.algorithm_type == "dpmsolver": |
|
if self.config.prediction_type == "epsilon": |
|
|
|
if self.config.variance_type in ["learned_range"]: |
|
model_output = model_output[:, :3] |
|
return model_output |
|
elif self.config.prediction_type == "sample": |
|
sigma = self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
epsilon = (sample - alpha_t * model_output) / sigma_t |
|
return epsilon |
|
elif self.config.prediction_type == "v_prediction": |
|
sigma = self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
epsilon = alpha_t * model_output + sigma_t * sample |
|
return epsilon |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction` for the DPMSolverSinglestepScheduler." |
|
) |
|
|