Spaces:
Runtime error
Runtime error
from transformers import AutoImageProcessor, AutoModel | |
from typing import Dict | |
import numpy as np | |
from matplotlib import cm | |
from PIL import Image | |
from torch import Tensor | |
model = AutoModel.from_pretrained( | |
"RGBD-SOD/dptdepth", trust_remote_code=True, cache_dir="model_cache" | |
) | |
image_processor = AutoImageProcessor.from_pretrained( | |
"RGBD-SOD/dptdepth", trust_remote_code=True, cache_dir="image_processor_cache" | |
) | |
def inference(rgb: Image.Image) -> Image.Image: | |
rgb = rgb.convert(mode="RGB") | |
preprocessed_sample: Dict[str, Tensor] = image_processor.preprocess( | |
{ | |
"rgb": rgb, | |
} | |
) | |
output: Dict[str, Tensor] = model(preprocessed_sample["rgb"]) | |
postprocessed_sample: np.ndarray = image_processor.postprocess( | |
output["logits"], [rgb.size[1], rgb.size[0]] | |
) | |
prediction = Image.fromarray(np.uint8(cm.gist_earth(postprocessed_sample) * 255)) | |
return prediction | |
if __name__ == "__main__": | |
pass | |