Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import torch | |
from transformers import BertModel, BertTokenizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
tokenizer = BertTokenizer.from_pretrained("DeepPavlov/rubert-base-cased-sentence") | |
model = BertModel.from_pretrained("DeepPavlov/rubert-base-cased-sentence", output_hidden_states = True) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
def filter_by_ganre(df: pd.DataFrame, ganre_list: list): | |
filtered_df = df[df['ganres'].apply(lambda x: any(g in ganre_list for g in(x)))] | |
filt_ind = filtered_df.index.to_list() | |
return filt_ind | |
# def mean_pooling(model_output, attention_mask): | |
# token_embeddings = model_output['last_hidden_state'] | |
# input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
# sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) | |
# sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
# return sum_embeddings / sum_mask | |
# def recommendation(filt_ind: list, embeddings: np.array, user_text: str, n=10): | |
# token_user_text = tokenizer(user_text, return_tensors='pt', padding='max_length', truncation=True, max_length=512) | |
# user_embeddings = torch.Tensor().to(device) | |
# model.to(device) | |
# model.eval() | |
# with torch.no_grad(): | |
# batch = {k: v.to(device) for k, v in token_user_text.items()} | |
# outputs = model(**batch) | |
# user_embeddings = torch.cat([user_embeddings, mean_pooling(outputs, batch['attention_mask'])]) | |
# user_embeddings = user_embeddings.cpu().numpy() | |
# cosine_similarities = cosine_similarity(embeddings[filt_ind], user_embeddings.reshape(1, -1)) | |
# df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False) | |
# dict_topn = df_res.iloc[:n, :].cos_sim.to_dict() | |
# return dict_topn | |
def recommendation(filt_ind: list, embeddings:np.array, user_text: str, n=10): | |
tokens = tokenizer(user_text, return_tensors="pt", padding=True, truncation=True) | |
model.to(device) | |
model.eval() | |
with torch.no_grad(): | |
tokens = {key: value.to(model.device) for key, value in tokens.items()} | |
outputs = model(**tokens) | |
user_embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().detach().numpy() | |
cosine_similarities = cosine_similarity(embeddings[filt_ind], user_embedding.reshape(1, -1)) | |
df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False) | |
dict_topn = df_res.iloc[:n, :].cos_sim.to_dict() | |
return dict_topn |