Spaces:
Runtime error
Runtime error
File size: 2,384 Bytes
d2677d3 e46fd7d 777ee0f e46fd7d 777ee0f e46fd7d d2677d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
def create_demo(process):
block = gr.Blocks().queue()
with block:
with gr.Row():
with gr.Column():
input_img = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
neg_prompt = gr.Textbox(label="Negative Prompt",
value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
con_strength = gr.Slider(label="Controling Strength (The guidance strength of the sketch to the result)", minimum=0, maximum=1, value=0.4, step=0.1)
scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed)')
base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
with gr.Column():
result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
ips = [input_img,prompt, neg_prompt, fix_sample, scale, con_strength, base_model]
run_button.click(fn=process, inputs=ips, outputs=[result])
examples_list = [["iron.png", "iron man, cyberpunk",
"ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face",
'True',
7.5,
0.4,
'sd-v1-4.ckpt']]
examples = gr.Examples(examples=examples_list,inputs = [input_img, prompt,neg_prompt, fix_sample, scale, con_strength,base_model], outputs = [result], cache_examples = True, fn = process)
return block |