File size: 6,026 Bytes
7da7768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47163f5
 
 
 
 
 
 
 
 
 
7da7768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47163f5
 
 
 
 
 
 
 
 
28425ed
47163f5
 
 
 
 
 
 
 
928a499
758cfc5
47163f5
 
7e98f35
 
5914cbe
7beb833
5914cbe
 
 
 
7beb833
47163f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import os.path as osp

import cv2
import numpy as np
import torch
from basicsr.utils import img2tensor, tensor2img
from pytorch_lightning import seed_everything
from ldm.models.diffusion.plms import PLMSSampler
from ldm.modules.encoders.adapter import Adapter
from ldm.util import instantiate_from_config
from model_edge import pidinet
import gradio as gr
from omegaconf import OmegaConf

import pathlib
import random
import shlex
import subprocess
import sys

sys.path.append('T2I-Adapter')

config_path =  'https://github.com/TencentARC/T2I-Adapter/raw/main/configs/stable-diffusion/'
model_path = 'https://github.com/TencentARC/T2I-Adapter/raw/main/models/'

def load_model_from_config(config, ckpt, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    if "state_dict" in pl_sd:
        sd = pl_sd["state_dict"]
    else:
        sd = pl_sd
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    # if len(m) > 0 and verbose:
    #     print("missing keys:")
    #     print(m)
    # if len(u) > 0 and verbose:
    #     print("unexpected keys:")
    #     print(u)

    model.cuda()
    model.eval()
    return model

class Model:
    def __init__(self,
                 model_config_path: str = 'ControlNet/models/cldm_v15.yaml',
                 model_dir: str = 'models',
                 use_lightweight: bool = True):
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')    
        self.model_dir = pathlib.Path(model_dir)

        self.download_models()



    def download_models(self) -> None:
        self.model_dir.mkdir(exist_ok=True, parents=True)
        device = 'cuda'
    
        config = OmegaConf.load("configs/stable-diffusion/test_sketch.yaml")
        config.model.params.cond_stage_config.params.device = device

        base_model_file = "https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt"
        sketch_adapter_file = "https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_sketch_sd14v1.pth"
        pidinet_file = model_path+"table5_pidinet.pth"
        clip_file = "https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/*"
        
        subprocess.run(shlex.split(f'wget {base_model_file} -O models/sd-v1-4.ckpt'))
        subprocess.run(shlex.split(f'wget {sketch_adapter_file} -O models/t2iadapter_sketch_sd14v1.pth'))
        subprocess.run(shlex.split(f'wget {pidinet_file} -O models/table5_pidinet.pth'))

        
        model = load_model_from_config(config, "models/sd-v1-4.ckpt").to(device)
        current_base = 'sd-v1-4.ckpt'
        model_ad = Adapter(channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(device)
        model_ad.load_state_dict(torch.load("models/t2iadapter_sketch_sd14v1.pth"))
        net_G = pidinet()
        ckp = torch.load('models/table5_pidinet.pth', map_location='cpu')['state_dict']
        net_G.load_state_dict({k.replace('module.',''):v for k, v in ckp.items()})
        net_G.to(device)
        sampler = PLMSSampler(model)
        save_memory=True

    @torch.inference_mode()
    def process_sketch(self, input_img, type_in, color_back, prompt, neg_prompt, fix_sample, scale, con_strength, base_model):    
        global current_base
        if current_base != base_model:
            ckpt = os.path.join("models", base_model)
            pl_sd = torch.load(ckpt, map_location="cpu")
            if "state_dict" in pl_sd:
                sd = pl_sd["state_dict"]
            else:
                sd = pl_sd
            model.load_state_dict(sd, strict=False) #load_model_from_config(config, os.path.join("models", base_model)).to(device)
            current_base = base_model
        con_strength = int((1-con_strength)*50)
        if fix_sample == 'True':
            seed_everything(42)
        
        im = cv2.resize(input_img,(512,512))
    
        if type_in == 'Sketch':
            # net_G = net_G.cpu()
            if color_back == 'White':
                im = 255-im
            im_edge = im.copy()
            im = img2tensor(im)[0].unsqueeze(0).unsqueeze(0)/255.
            # edge = 1-edge # for white background
            im = im>0.5
            im = im.float()
        elif type_in == 'Image':
            im = img2tensor(im).unsqueeze(0)/255.
            im = net_G(im.to(device))[-1]
            im = im>0.5
            im = im.float()
            im_edge = tensor2img(im)
    
        c = model.get_learned_conditioning([prompt])
        nc = model.get_learned_conditioning([neg_prompt])
        
        with torch.no_grad():
            # extract condition features
            features_adapter = model_ad(im.to(device))
    
        shape = [4, 64, 64]
    
        # sampling
        samples_ddim, _ = sampler.sample(S=50,
                                        conditioning=c,
                                        batch_size=1,
                                        shape=shape,
                                        verbose=False,
                                        unconditional_guidance_scale=scale,
                                        unconditional_conditioning=nc,
                                        eta=0.0,
                                        x_T=None,
                                        features_adapter1=features_adapter,
                                        mode = 'sketch',
                                        con_strength = con_strength)
    
        x_samples_ddim = model.decode_first_stage(samples_ddim)
        x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
        x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1).numpy()[0]
        x_samples_ddim = 255.*x_samples_ddim
        x_samples_ddim = x_samples_ddim.astype(np.uint8)
    
        return [im_edge, x_samples_ddim]