Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import pathlib | |
import shlex | |
import subprocess | |
import gradio as gr | |
# base_url = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/' | |
# names = [ | |
# 'body_pose_model.pth', | |
# 'dpt_hybrid-midas-501f0c75.pt', | |
# 'hand_pose_model.pth', | |
# 'mlsd_large_512_fp32.pth', | |
# 'mlsd_tiny_512_fp32.pth', | |
# 'network-bsds500.pth', | |
# 'upernet_global_small.pth', | |
# ] | |
# for name in names: | |
# command = f'wget https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/{name} -O {name}' | |
# out_path = pathlib.Path(f'ControlNet/annotator/ckpts/{name}') | |
# if out_path.exists(): | |
# continue | |
# subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/') | |
from gradio_sketch import create_demo as create_demo_sketch | |
from gradio_pose import create_demo as create_demo_pose | |
from gradio_seg import create_demo as create_demo_seg | |
from model import Model | |
MAX_IMAGES = 1 | |
description = '''This is an unofficial demo for T2I-Adapter. [Paper](https://arxiv.org/abs/2302.08453) [GitHub](https://github.com/TencentARC/T2I-Adapter) | |
''' | |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None: | |
description += f'''<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.<br/> | |
<a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"> | |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
<p/> | |
''' | |
model = Model() | |
with gr.Blocks(css='style.css') as demo: | |
gr.Markdown("## T2I Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models.") | |
gr.Markdown(description) | |
with gr.Tabs(): | |
with gr.TabItem('Sketch'): | |
create_demo_sketch(model.process_sketch) | |
with gr.TabItem('Pose'): | |
create_demo_pose(model.process_pose) | |
with gr.TabItem('Segmentation'): | |
create_demo_seg(model.process_seg) | |
demo.queue(api_open=False).launch() |