Spaces:
Runtime error
Runtime error
RamAnanth1
commited on
Commit
•
015a3b5
1
Parent(s):
7da7768
Create model_edge.py
Browse files- model_edge.py +639 -0
model_edge.py
ADDED
@@ -0,0 +1,639 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Zhuo Su, Wenzhe Liu
|
3 |
+
Date: Feb 18, 2021
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from basicsr.utils import img2tensor
|
14 |
+
|
15 |
+
nets = {
|
16 |
+
'baseline': {
|
17 |
+
'layer0': 'cv',
|
18 |
+
'layer1': 'cv',
|
19 |
+
'layer2': 'cv',
|
20 |
+
'layer3': 'cv',
|
21 |
+
'layer4': 'cv',
|
22 |
+
'layer5': 'cv',
|
23 |
+
'layer6': 'cv',
|
24 |
+
'layer7': 'cv',
|
25 |
+
'layer8': 'cv',
|
26 |
+
'layer9': 'cv',
|
27 |
+
'layer10': 'cv',
|
28 |
+
'layer11': 'cv',
|
29 |
+
'layer12': 'cv',
|
30 |
+
'layer13': 'cv',
|
31 |
+
'layer14': 'cv',
|
32 |
+
'layer15': 'cv',
|
33 |
+
},
|
34 |
+
'c-v15': {
|
35 |
+
'layer0': 'cd',
|
36 |
+
'layer1': 'cv',
|
37 |
+
'layer2': 'cv',
|
38 |
+
'layer3': 'cv',
|
39 |
+
'layer4': 'cv',
|
40 |
+
'layer5': 'cv',
|
41 |
+
'layer6': 'cv',
|
42 |
+
'layer7': 'cv',
|
43 |
+
'layer8': 'cv',
|
44 |
+
'layer9': 'cv',
|
45 |
+
'layer10': 'cv',
|
46 |
+
'layer11': 'cv',
|
47 |
+
'layer12': 'cv',
|
48 |
+
'layer13': 'cv',
|
49 |
+
'layer14': 'cv',
|
50 |
+
'layer15': 'cv',
|
51 |
+
},
|
52 |
+
'a-v15': {
|
53 |
+
'layer0': 'ad',
|
54 |
+
'layer1': 'cv',
|
55 |
+
'layer2': 'cv',
|
56 |
+
'layer3': 'cv',
|
57 |
+
'layer4': 'cv',
|
58 |
+
'layer5': 'cv',
|
59 |
+
'layer6': 'cv',
|
60 |
+
'layer7': 'cv',
|
61 |
+
'layer8': 'cv',
|
62 |
+
'layer9': 'cv',
|
63 |
+
'layer10': 'cv',
|
64 |
+
'layer11': 'cv',
|
65 |
+
'layer12': 'cv',
|
66 |
+
'layer13': 'cv',
|
67 |
+
'layer14': 'cv',
|
68 |
+
'layer15': 'cv',
|
69 |
+
},
|
70 |
+
'r-v15': {
|
71 |
+
'layer0': 'rd',
|
72 |
+
'layer1': 'cv',
|
73 |
+
'layer2': 'cv',
|
74 |
+
'layer3': 'cv',
|
75 |
+
'layer4': 'cv',
|
76 |
+
'layer5': 'cv',
|
77 |
+
'layer6': 'cv',
|
78 |
+
'layer7': 'cv',
|
79 |
+
'layer8': 'cv',
|
80 |
+
'layer9': 'cv',
|
81 |
+
'layer10': 'cv',
|
82 |
+
'layer11': 'cv',
|
83 |
+
'layer12': 'cv',
|
84 |
+
'layer13': 'cv',
|
85 |
+
'layer14': 'cv',
|
86 |
+
'layer15': 'cv',
|
87 |
+
},
|
88 |
+
'cvvv4': {
|
89 |
+
'layer0': 'cd',
|
90 |
+
'layer1': 'cv',
|
91 |
+
'layer2': 'cv',
|
92 |
+
'layer3': 'cv',
|
93 |
+
'layer4': 'cd',
|
94 |
+
'layer5': 'cv',
|
95 |
+
'layer6': 'cv',
|
96 |
+
'layer7': 'cv',
|
97 |
+
'layer8': 'cd',
|
98 |
+
'layer9': 'cv',
|
99 |
+
'layer10': 'cv',
|
100 |
+
'layer11': 'cv',
|
101 |
+
'layer12': 'cd',
|
102 |
+
'layer13': 'cv',
|
103 |
+
'layer14': 'cv',
|
104 |
+
'layer15': 'cv',
|
105 |
+
},
|
106 |
+
'avvv4': {
|
107 |
+
'layer0': 'ad',
|
108 |
+
'layer1': 'cv',
|
109 |
+
'layer2': 'cv',
|
110 |
+
'layer3': 'cv',
|
111 |
+
'layer4': 'ad',
|
112 |
+
'layer5': 'cv',
|
113 |
+
'layer6': 'cv',
|
114 |
+
'layer7': 'cv',
|
115 |
+
'layer8': 'ad',
|
116 |
+
'layer9': 'cv',
|
117 |
+
'layer10': 'cv',
|
118 |
+
'layer11': 'cv',
|
119 |
+
'layer12': 'ad',
|
120 |
+
'layer13': 'cv',
|
121 |
+
'layer14': 'cv',
|
122 |
+
'layer15': 'cv',
|
123 |
+
},
|
124 |
+
'rvvv4': {
|
125 |
+
'layer0': 'rd',
|
126 |
+
'layer1': 'cv',
|
127 |
+
'layer2': 'cv',
|
128 |
+
'layer3': 'cv',
|
129 |
+
'layer4': 'rd',
|
130 |
+
'layer5': 'cv',
|
131 |
+
'layer6': 'cv',
|
132 |
+
'layer7': 'cv',
|
133 |
+
'layer8': 'rd',
|
134 |
+
'layer9': 'cv',
|
135 |
+
'layer10': 'cv',
|
136 |
+
'layer11': 'cv',
|
137 |
+
'layer12': 'rd',
|
138 |
+
'layer13': 'cv',
|
139 |
+
'layer14': 'cv',
|
140 |
+
'layer15': 'cv',
|
141 |
+
},
|
142 |
+
'cccv4': {
|
143 |
+
'layer0': 'cd',
|
144 |
+
'layer1': 'cd',
|
145 |
+
'layer2': 'cd',
|
146 |
+
'layer3': 'cv',
|
147 |
+
'layer4': 'cd',
|
148 |
+
'layer5': 'cd',
|
149 |
+
'layer6': 'cd',
|
150 |
+
'layer7': 'cv',
|
151 |
+
'layer8': 'cd',
|
152 |
+
'layer9': 'cd',
|
153 |
+
'layer10': 'cd',
|
154 |
+
'layer11': 'cv',
|
155 |
+
'layer12': 'cd',
|
156 |
+
'layer13': 'cd',
|
157 |
+
'layer14': 'cd',
|
158 |
+
'layer15': 'cv',
|
159 |
+
},
|
160 |
+
'aaav4': {
|
161 |
+
'layer0': 'ad',
|
162 |
+
'layer1': 'ad',
|
163 |
+
'layer2': 'ad',
|
164 |
+
'layer3': 'cv',
|
165 |
+
'layer4': 'ad',
|
166 |
+
'layer5': 'ad',
|
167 |
+
'layer6': 'ad',
|
168 |
+
'layer7': 'cv',
|
169 |
+
'layer8': 'ad',
|
170 |
+
'layer9': 'ad',
|
171 |
+
'layer10': 'ad',
|
172 |
+
'layer11': 'cv',
|
173 |
+
'layer12': 'ad',
|
174 |
+
'layer13': 'ad',
|
175 |
+
'layer14': 'ad',
|
176 |
+
'layer15': 'cv',
|
177 |
+
},
|
178 |
+
'rrrv4': {
|
179 |
+
'layer0': 'rd',
|
180 |
+
'layer1': 'rd',
|
181 |
+
'layer2': 'rd',
|
182 |
+
'layer3': 'cv',
|
183 |
+
'layer4': 'rd',
|
184 |
+
'layer5': 'rd',
|
185 |
+
'layer6': 'rd',
|
186 |
+
'layer7': 'cv',
|
187 |
+
'layer8': 'rd',
|
188 |
+
'layer9': 'rd',
|
189 |
+
'layer10': 'rd',
|
190 |
+
'layer11': 'cv',
|
191 |
+
'layer12': 'rd',
|
192 |
+
'layer13': 'rd',
|
193 |
+
'layer14': 'rd',
|
194 |
+
'layer15': 'cv',
|
195 |
+
},
|
196 |
+
'c16': {
|
197 |
+
'layer0': 'cd',
|
198 |
+
'layer1': 'cd',
|
199 |
+
'layer2': 'cd',
|
200 |
+
'layer3': 'cd',
|
201 |
+
'layer4': 'cd',
|
202 |
+
'layer5': 'cd',
|
203 |
+
'layer6': 'cd',
|
204 |
+
'layer7': 'cd',
|
205 |
+
'layer8': 'cd',
|
206 |
+
'layer9': 'cd',
|
207 |
+
'layer10': 'cd',
|
208 |
+
'layer11': 'cd',
|
209 |
+
'layer12': 'cd',
|
210 |
+
'layer13': 'cd',
|
211 |
+
'layer14': 'cd',
|
212 |
+
'layer15': 'cd',
|
213 |
+
},
|
214 |
+
'a16': {
|
215 |
+
'layer0': 'ad',
|
216 |
+
'layer1': 'ad',
|
217 |
+
'layer2': 'ad',
|
218 |
+
'layer3': 'ad',
|
219 |
+
'layer4': 'ad',
|
220 |
+
'layer5': 'ad',
|
221 |
+
'layer6': 'ad',
|
222 |
+
'layer7': 'ad',
|
223 |
+
'layer8': 'ad',
|
224 |
+
'layer9': 'ad',
|
225 |
+
'layer10': 'ad',
|
226 |
+
'layer11': 'ad',
|
227 |
+
'layer12': 'ad',
|
228 |
+
'layer13': 'ad',
|
229 |
+
'layer14': 'ad',
|
230 |
+
'layer15': 'ad',
|
231 |
+
},
|
232 |
+
'r16': {
|
233 |
+
'layer0': 'rd',
|
234 |
+
'layer1': 'rd',
|
235 |
+
'layer2': 'rd',
|
236 |
+
'layer3': 'rd',
|
237 |
+
'layer4': 'rd',
|
238 |
+
'layer5': 'rd',
|
239 |
+
'layer6': 'rd',
|
240 |
+
'layer7': 'rd',
|
241 |
+
'layer8': 'rd',
|
242 |
+
'layer9': 'rd',
|
243 |
+
'layer10': 'rd',
|
244 |
+
'layer11': 'rd',
|
245 |
+
'layer12': 'rd',
|
246 |
+
'layer13': 'rd',
|
247 |
+
'layer14': 'rd',
|
248 |
+
'layer15': 'rd',
|
249 |
+
},
|
250 |
+
'carv4': {
|
251 |
+
'layer0': 'cd',
|
252 |
+
'layer1': 'ad',
|
253 |
+
'layer2': 'rd',
|
254 |
+
'layer3': 'cv',
|
255 |
+
'layer4': 'cd',
|
256 |
+
'layer5': 'ad',
|
257 |
+
'layer6': 'rd',
|
258 |
+
'layer7': 'cv',
|
259 |
+
'layer8': 'cd',
|
260 |
+
'layer9': 'ad',
|
261 |
+
'layer10': 'rd',
|
262 |
+
'layer11': 'cv',
|
263 |
+
'layer12': 'cd',
|
264 |
+
'layer13': 'ad',
|
265 |
+
'layer14': 'rd',
|
266 |
+
'layer15': 'cv',
|
267 |
+
},
|
268 |
+
}
|
269 |
+
|
270 |
+
def createConvFunc(op_type):
|
271 |
+
assert op_type in ['cv', 'cd', 'ad', 'rd'], 'unknown op type: %s' % str(op_type)
|
272 |
+
if op_type == 'cv':
|
273 |
+
return F.conv2d
|
274 |
+
|
275 |
+
if op_type == 'cd':
|
276 |
+
def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
277 |
+
assert dilation in [1, 2], 'dilation for cd_conv should be in 1 or 2'
|
278 |
+
assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for cd_conv should be 3x3'
|
279 |
+
assert padding == dilation, 'padding for cd_conv set wrong'
|
280 |
+
|
281 |
+
weights_c = weights.sum(dim=[2, 3], keepdim=True)
|
282 |
+
yc = F.conv2d(x, weights_c, stride=stride, padding=0, groups=groups)
|
283 |
+
y = F.conv2d(x, weights, bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
|
284 |
+
return y - yc
|
285 |
+
return func
|
286 |
+
elif op_type == 'ad':
|
287 |
+
def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
288 |
+
assert dilation in [1, 2], 'dilation for ad_conv should be in 1 or 2'
|
289 |
+
assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for ad_conv should be 3x3'
|
290 |
+
assert padding == dilation, 'padding for ad_conv set wrong'
|
291 |
+
|
292 |
+
shape = weights.shape
|
293 |
+
weights = weights.view(shape[0], shape[1], -1)
|
294 |
+
weights_conv = (weights - weights[:, :, [3, 0, 1, 6, 4, 2, 7, 8, 5]]).view(shape) # clock-wise
|
295 |
+
y = F.conv2d(x, weights_conv, bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
|
296 |
+
return y
|
297 |
+
return func
|
298 |
+
elif op_type == 'rd':
|
299 |
+
def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
300 |
+
assert dilation in [1, 2], 'dilation for rd_conv should be in 1 or 2'
|
301 |
+
assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for rd_conv should be 3x3'
|
302 |
+
padding = 2 * dilation
|
303 |
+
|
304 |
+
shape = weights.shape
|
305 |
+
if weights.is_cuda:
|
306 |
+
buffer = torch.cuda.FloatTensor(shape[0], shape[1], 5 * 5).fill_(0)
|
307 |
+
else:
|
308 |
+
buffer = torch.zeros(shape[0], shape[1], 5 * 5)
|
309 |
+
weights = weights.view(shape[0], shape[1], -1)
|
310 |
+
buffer[:, :, [0, 2, 4, 10, 14, 20, 22, 24]] = weights[:, :, 1:]
|
311 |
+
buffer[:, :, [6, 7, 8, 11, 13, 16, 17, 18]] = -weights[:, :, 1:]
|
312 |
+
buffer[:, :, 12] = 0
|
313 |
+
buffer = buffer.view(shape[0], shape[1], 5, 5)
|
314 |
+
y = F.conv2d(x, buffer, bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
|
315 |
+
return y
|
316 |
+
return func
|
317 |
+
else:
|
318 |
+
print('impossible to be here unless you force that')
|
319 |
+
return None
|
320 |
+
|
321 |
+
class Conv2d(nn.Module):
|
322 |
+
def __init__(self, pdc, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False):
|
323 |
+
super(Conv2d, self).__init__()
|
324 |
+
if in_channels % groups != 0:
|
325 |
+
raise ValueError('in_channels must be divisible by groups')
|
326 |
+
if out_channels % groups != 0:
|
327 |
+
raise ValueError('out_channels must be divisible by groups')
|
328 |
+
self.in_channels = in_channels
|
329 |
+
self.out_channels = out_channels
|
330 |
+
self.kernel_size = kernel_size
|
331 |
+
self.stride = stride
|
332 |
+
self.padding = padding
|
333 |
+
self.dilation = dilation
|
334 |
+
self.groups = groups
|
335 |
+
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size, kernel_size))
|
336 |
+
if bias:
|
337 |
+
self.bias = nn.Parameter(torch.Tensor(out_channels))
|
338 |
+
else:
|
339 |
+
self.register_parameter('bias', None)
|
340 |
+
self.reset_parameters()
|
341 |
+
self.pdc = pdc
|
342 |
+
|
343 |
+
def reset_parameters(self):
|
344 |
+
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
345 |
+
if self.bias is not None:
|
346 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
|
347 |
+
bound = 1 / math.sqrt(fan_in)
|
348 |
+
nn.init.uniform_(self.bias, -bound, bound)
|
349 |
+
|
350 |
+
def forward(self, input):
|
351 |
+
|
352 |
+
return self.pdc(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
353 |
+
|
354 |
+
class CSAM(nn.Module):
|
355 |
+
"""
|
356 |
+
Compact Spatial Attention Module
|
357 |
+
"""
|
358 |
+
def __init__(self, channels):
|
359 |
+
super(CSAM, self).__init__()
|
360 |
+
|
361 |
+
mid_channels = 4
|
362 |
+
self.relu1 = nn.ReLU()
|
363 |
+
self.conv1 = nn.Conv2d(channels, mid_channels, kernel_size=1, padding=0)
|
364 |
+
self.conv2 = nn.Conv2d(mid_channels, 1, kernel_size=3, padding=1, bias=False)
|
365 |
+
self.sigmoid = nn.Sigmoid()
|
366 |
+
nn.init.constant_(self.conv1.bias, 0)
|
367 |
+
|
368 |
+
def forward(self, x):
|
369 |
+
y = self.relu1(x)
|
370 |
+
y = self.conv1(y)
|
371 |
+
y = self.conv2(y)
|
372 |
+
y = self.sigmoid(y)
|
373 |
+
|
374 |
+
return x * y
|
375 |
+
|
376 |
+
class CDCM(nn.Module):
|
377 |
+
"""
|
378 |
+
Compact Dilation Convolution based Module
|
379 |
+
"""
|
380 |
+
def __init__(self, in_channels, out_channels):
|
381 |
+
super(CDCM, self).__init__()
|
382 |
+
|
383 |
+
self.relu1 = nn.ReLU()
|
384 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
|
385 |
+
self.conv2_1 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=5, padding=5, bias=False)
|
386 |
+
self.conv2_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=7, padding=7, bias=False)
|
387 |
+
self.conv2_3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=9, padding=9, bias=False)
|
388 |
+
self.conv2_4 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=11, padding=11, bias=False)
|
389 |
+
nn.init.constant_(self.conv1.bias, 0)
|
390 |
+
|
391 |
+
def forward(self, x):
|
392 |
+
x = self.relu1(x)
|
393 |
+
x = self.conv1(x)
|
394 |
+
x1 = self.conv2_1(x)
|
395 |
+
x2 = self.conv2_2(x)
|
396 |
+
x3 = self.conv2_3(x)
|
397 |
+
x4 = self.conv2_4(x)
|
398 |
+
return x1 + x2 + x3 + x4
|
399 |
+
|
400 |
+
|
401 |
+
class MapReduce(nn.Module):
|
402 |
+
"""
|
403 |
+
Reduce feature maps into a single edge map
|
404 |
+
"""
|
405 |
+
def __init__(self, channels):
|
406 |
+
super(MapReduce, self).__init__()
|
407 |
+
self.conv = nn.Conv2d(channels, 1, kernel_size=1, padding=0)
|
408 |
+
nn.init.constant_(self.conv.bias, 0)
|
409 |
+
|
410 |
+
def forward(self, x):
|
411 |
+
return self.conv(x)
|
412 |
+
|
413 |
+
|
414 |
+
class PDCBlock(nn.Module):
|
415 |
+
def __init__(self, pdc, inplane, ouplane, stride=1):
|
416 |
+
super(PDCBlock, self).__init__()
|
417 |
+
self.stride=stride
|
418 |
+
|
419 |
+
self.stride=stride
|
420 |
+
if self.stride > 1:
|
421 |
+
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
422 |
+
self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0)
|
423 |
+
self.conv1 = Conv2d(pdc, inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False)
|
424 |
+
self.relu2 = nn.ReLU()
|
425 |
+
self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False)
|
426 |
+
|
427 |
+
def forward(self, x):
|
428 |
+
if self.stride > 1:
|
429 |
+
x = self.pool(x)
|
430 |
+
y = self.conv1(x)
|
431 |
+
y = self.relu2(y)
|
432 |
+
y = self.conv2(y)
|
433 |
+
if self.stride > 1:
|
434 |
+
x = self.shortcut(x)
|
435 |
+
y = y + x
|
436 |
+
return y
|
437 |
+
|
438 |
+
class PDCBlock_converted(nn.Module):
|
439 |
+
"""
|
440 |
+
CPDC, APDC can be converted to vanilla 3x3 convolution
|
441 |
+
RPDC can be converted to vanilla 5x5 convolution
|
442 |
+
"""
|
443 |
+
def __init__(self, pdc, inplane, ouplane, stride=1):
|
444 |
+
super(PDCBlock_converted, self).__init__()
|
445 |
+
self.stride=stride
|
446 |
+
|
447 |
+
if self.stride > 1:
|
448 |
+
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
449 |
+
self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0)
|
450 |
+
if pdc == 'rd':
|
451 |
+
self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=5, padding=2, groups=inplane, bias=False)
|
452 |
+
else:
|
453 |
+
self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False)
|
454 |
+
self.relu2 = nn.ReLU()
|
455 |
+
self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False)
|
456 |
+
|
457 |
+
def forward(self, x):
|
458 |
+
if self.stride > 1:
|
459 |
+
x = self.pool(x)
|
460 |
+
y = self.conv1(x)
|
461 |
+
y = self.relu2(y)
|
462 |
+
y = self.conv2(y)
|
463 |
+
if self.stride > 1:
|
464 |
+
x = self.shortcut(x)
|
465 |
+
y = y + x
|
466 |
+
return y
|
467 |
+
|
468 |
+
class PiDiNet(nn.Module):
|
469 |
+
def __init__(self, inplane, pdcs, dil=None, sa=False, convert=False):
|
470 |
+
super(PiDiNet, self).__init__()
|
471 |
+
self.sa = sa
|
472 |
+
if dil is not None:
|
473 |
+
assert isinstance(dil, int), 'dil should be an int'
|
474 |
+
self.dil = dil
|
475 |
+
|
476 |
+
self.fuseplanes = []
|
477 |
+
|
478 |
+
self.inplane = inplane
|
479 |
+
if convert:
|
480 |
+
if pdcs[0] == 'rd':
|
481 |
+
init_kernel_size = 5
|
482 |
+
init_padding = 2
|
483 |
+
else:
|
484 |
+
init_kernel_size = 3
|
485 |
+
init_padding = 1
|
486 |
+
self.init_block = nn.Conv2d(3, self.inplane,
|
487 |
+
kernel_size=init_kernel_size, padding=init_padding, bias=False)
|
488 |
+
block_class = PDCBlock_converted
|
489 |
+
else:
|
490 |
+
self.init_block = Conv2d(pdcs[0], 3, self.inplane, kernel_size=3, padding=1)
|
491 |
+
block_class = PDCBlock
|
492 |
+
|
493 |
+
self.block1_1 = block_class(pdcs[1], self.inplane, self.inplane)
|
494 |
+
self.block1_2 = block_class(pdcs[2], self.inplane, self.inplane)
|
495 |
+
self.block1_3 = block_class(pdcs[3], self.inplane, self.inplane)
|
496 |
+
self.fuseplanes.append(self.inplane) # C
|
497 |
+
|
498 |
+
inplane = self.inplane
|
499 |
+
self.inplane = self.inplane * 2
|
500 |
+
self.block2_1 = block_class(pdcs[4], inplane, self.inplane, stride=2)
|
501 |
+
self.block2_2 = block_class(pdcs[5], self.inplane, self.inplane)
|
502 |
+
self.block2_3 = block_class(pdcs[6], self.inplane, self.inplane)
|
503 |
+
self.block2_4 = block_class(pdcs[7], self.inplane, self.inplane)
|
504 |
+
self.fuseplanes.append(self.inplane) # 2C
|
505 |
+
|
506 |
+
inplane = self.inplane
|
507 |
+
self.inplane = self.inplane * 2
|
508 |
+
self.block3_1 = block_class(pdcs[8], inplane, self.inplane, stride=2)
|
509 |
+
self.block3_2 = block_class(pdcs[9], self.inplane, self.inplane)
|
510 |
+
self.block3_3 = block_class(pdcs[10], self.inplane, self.inplane)
|
511 |
+
self.block3_4 = block_class(pdcs[11], self.inplane, self.inplane)
|
512 |
+
self.fuseplanes.append(self.inplane) # 4C
|
513 |
+
|
514 |
+
self.block4_1 = block_class(pdcs[12], self.inplane, self.inplane, stride=2)
|
515 |
+
self.block4_2 = block_class(pdcs[13], self.inplane, self.inplane)
|
516 |
+
self.block4_3 = block_class(pdcs[14], self.inplane, self.inplane)
|
517 |
+
self.block4_4 = block_class(pdcs[15], self.inplane, self.inplane)
|
518 |
+
self.fuseplanes.append(self.inplane) # 4C
|
519 |
+
|
520 |
+
self.conv_reduces = nn.ModuleList()
|
521 |
+
if self.sa and self.dil is not None:
|
522 |
+
self.attentions = nn.ModuleList()
|
523 |
+
self.dilations = nn.ModuleList()
|
524 |
+
for i in range(4):
|
525 |
+
self.dilations.append(CDCM(self.fuseplanes[i], self.dil))
|
526 |
+
self.attentions.append(CSAM(self.dil))
|
527 |
+
self.conv_reduces.append(MapReduce(self.dil))
|
528 |
+
elif self.sa:
|
529 |
+
self.attentions = nn.ModuleList()
|
530 |
+
for i in range(4):
|
531 |
+
self.attentions.append(CSAM(self.fuseplanes[i]))
|
532 |
+
self.conv_reduces.append(MapReduce(self.fuseplanes[i]))
|
533 |
+
elif self.dil is not None:
|
534 |
+
self.dilations = nn.ModuleList()
|
535 |
+
for i in range(4):
|
536 |
+
self.dilations.append(CDCM(self.fuseplanes[i], self.dil))
|
537 |
+
self.conv_reduces.append(MapReduce(self.dil))
|
538 |
+
else:
|
539 |
+
for i in range(4):
|
540 |
+
self.conv_reduces.append(MapReduce(self.fuseplanes[i]))
|
541 |
+
|
542 |
+
self.classifier = nn.Conv2d(4, 1, kernel_size=1) # has bias
|
543 |
+
nn.init.constant_(self.classifier.weight, 0.25)
|
544 |
+
nn.init.constant_(self.classifier.bias, 0)
|
545 |
+
|
546 |
+
# print('initialization done')
|
547 |
+
|
548 |
+
def get_weights(self):
|
549 |
+
conv_weights = []
|
550 |
+
bn_weights = []
|
551 |
+
relu_weights = []
|
552 |
+
for pname, p in self.named_parameters():
|
553 |
+
if 'bn' in pname:
|
554 |
+
bn_weights.append(p)
|
555 |
+
elif 'relu' in pname:
|
556 |
+
relu_weights.append(p)
|
557 |
+
else:
|
558 |
+
conv_weights.append(p)
|
559 |
+
|
560 |
+
return conv_weights, bn_weights, relu_weights
|
561 |
+
|
562 |
+
def forward(self, x):
|
563 |
+
H, W = x.size()[2:]
|
564 |
+
|
565 |
+
x = self.init_block(x)
|
566 |
+
|
567 |
+
x1 = self.block1_1(x)
|
568 |
+
x1 = self.block1_2(x1)
|
569 |
+
x1 = self.block1_3(x1)
|
570 |
+
|
571 |
+
x2 = self.block2_1(x1)
|
572 |
+
x2 = self.block2_2(x2)
|
573 |
+
x2 = self.block2_3(x2)
|
574 |
+
x2 = self.block2_4(x2)
|
575 |
+
|
576 |
+
x3 = self.block3_1(x2)
|
577 |
+
x3 = self.block3_2(x3)
|
578 |
+
x3 = self.block3_3(x3)
|
579 |
+
x3 = self.block3_4(x3)
|
580 |
+
|
581 |
+
x4 = self.block4_1(x3)
|
582 |
+
x4 = self.block4_2(x4)
|
583 |
+
x4 = self.block4_3(x4)
|
584 |
+
x4 = self.block4_4(x4)
|
585 |
+
|
586 |
+
x_fuses = []
|
587 |
+
if self.sa and self.dil is not None:
|
588 |
+
for i, xi in enumerate([x1, x2, x3, x4]):
|
589 |
+
x_fuses.append(self.attentions[i](self.dilations[i](xi)))
|
590 |
+
elif self.sa:
|
591 |
+
for i, xi in enumerate([x1, x2, x3, x4]):
|
592 |
+
x_fuses.append(self.attentions[i](xi))
|
593 |
+
elif self.dil is not None:
|
594 |
+
for i, xi in enumerate([x1, x2, x3, x4]):
|
595 |
+
x_fuses.append(self.dilations[i](xi))
|
596 |
+
else:
|
597 |
+
x_fuses = [x1, x2, x3, x4]
|
598 |
+
|
599 |
+
e1 = self.conv_reduces[0](x_fuses[0])
|
600 |
+
e1 = F.interpolate(e1, (H, W), mode="bilinear", align_corners=False)
|
601 |
+
|
602 |
+
e2 = self.conv_reduces[1](x_fuses[1])
|
603 |
+
e2 = F.interpolate(e2, (H, W), mode="bilinear", align_corners=False)
|
604 |
+
|
605 |
+
e3 = self.conv_reduces[2](x_fuses[2])
|
606 |
+
e3 = F.interpolate(e3, (H, W), mode="bilinear", align_corners=False)
|
607 |
+
|
608 |
+
e4 = self.conv_reduces[3](x_fuses[3])
|
609 |
+
e4 = F.interpolate(e4, (H, W), mode="bilinear", align_corners=False)
|
610 |
+
|
611 |
+
outputs = [e1, e2, e3, e4]
|
612 |
+
|
613 |
+
output = self.classifier(torch.cat(outputs, dim=1))
|
614 |
+
#if not self.training:
|
615 |
+
# return torch.sigmoid(output)
|
616 |
+
|
617 |
+
outputs.append(output)
|
618 |
+
outputs = [torch.sigmoid(r) for r in outputs]
|
619 |
+
return outputs
|
620 |
+
|
621 |
+
def config_model(model):
|
622 |
+
model_options = list(nets.keys())
|
623 |
+
assert model in model_options, \
|
624 |
+
'unrecognized model, please choose from %s' % str(model_options)
|
625 |
+
|
626 |
+
# print(str(nets[model]))
|
627 |
+
|
628 |
+
pdcs = []
|
629 |
+
for i in range(16):
|
630 |
+
layer_name = 'layer%d' % i
|
631 |
+
op = nets[model][layer_name]
|
632 |
+
pdcs.append(createConvFunc(op))
|
633 |
+
|
634 |
+
return pdcs
|
635 |
+
|
636 |
+
def pidinet():
|
637 |
+
pdcs = config_model('carv4')
|
638 |
+
dil = 24 #if args.dil else None
|
639 |
+
return PiDiNet(60, pdcs, dil=dil, sa=True)
|