Spaces:
Runtime error
Runtime error
RamAnanth1
commited on
Commit
•
cb8d2af
1
Parent(s):
600ccab
Add seg adapter
Browse files
model.py
CHANGED
@@ -177,7 +177,8 @@ class Model:
|
|
177 |
base_model_file = "https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt"
|
178 |
base_model_file_anything = "https://huggingface.co/andite/anything-v4.0/resolve/main/anything-v4.0-pruned.ckpt"
|
179 |
sketch_adapter_file = "https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_sketch_sd14v1.pth"
|
180 |
-
pose_adapter_file = "https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_keypose_sd14v1.pth"
|
|
|
181 |
pidinet_file = model_path+"table5_pidinet.pth"
|
182 |
clip_file = "https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/*"
|
183 |
|
@@ -185,6 +186,7 @@ class Model:
|
|
185 |
subprocess.run(shlex.split(f'wget {base_model_file_anything} -O models/anything-v4.0-pruned.ckpt'))
|
186 |
subprocess.run(shlex.split(f'wget {sketch_adapter_file} -O models/t2iadapter_sketch_sd14v1.pth'))
|
187 |
subprocess.run(shlex.split(f'wget {pose_adapter_file} -O models/t2iadapter_keypose_sd14v1.pth'))
|
|
|
188 |
subprocess.run(shlex.split(f'wget {pidinet_file} -O models/table5_pidinet.pth'))
|
189 |
|
190 |
|
@@ -204,6 +206,9 @@ class Model:
|
|
204 |
self.model_ad_pose = Adapter(cin=int(3*64),channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(device)
|
205 |
self.model_ad_pose.load_state_dict(torch.load("models/t2iadapter_keypose_sd14v1.pth"))
|
206 |
|
|
|
|
|
|
|
207 |
|
208 |
@torch.inference_mode()
|
209 |
def process_sketch(self, input_img, type_in, color_back, prompt, neg_prompt, fix_sample, scale, con_strength, base_model):
|
@@ -370,4 +375,66 @@ class Model:
|
|
370 |
x_samples_ddim = 255.*x_samples_ddim
|
371 |
x_samples_ddim = x_samples_ddim.astype(np.uint8)
|
372 |
|
373 |
-
return [im_pose[:,:,::-1].astype(np.uint8), x_samples_ddim]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
base_model_file = "https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt"
|
178 |
base_model_file_anything = "https://huggingface.co/andite/anything-v4.0/resolve/main/anything-v4.0-pruned.ckpt"
|
179 |
sketch_adapter_file = "https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_sketch_sd14v1.pth"
|
180 |
+
pose_adapter_file = "https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_keypose_sd14v1.pth"
|
181 |
+
seg_adapter_file = "https://huggingface.co/TencentARC/T2I-Adapter/resolve/main/models/t2iadapter_seg_sd14v1.pth"
|
182 |
pidinet_file = model_path+"table5_pidinet.pth"
|
183 |
clip_file = "https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/*"
|
184 |
|
|
|
186 |
subprocess.run(shlex.split(f'wget {base_model_file_anything} -O models/anything-v4.0-pruned.ckpt'))
|
187 |
subprocess.run(shlex.split(f'wget {sketch_adapter_file} -O models/t2iadapter_sketch_sd14v1.pth'))
|
188 |
subprocess.run(shlex.split(f'wget {pose_adapter_file} -O models/t2iadapter_keypose_sd14v1.pth'))
|
189 |
+
subprocess.run(shlex.split(f'wget {seg_adapter_file} -O models/t2iadapter_seg_sd14v1.pth'))
|
190 |
subprocess.run(shlex.split(f'wget {pidinet_file} -O models/table5_pidinet.pth'))
|
191 |
|
192 |
|
|
|
206 |
self.model_ad_pose = Adapter(cin=int(3*64),channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(device)
|
207 |
self.model_ad_pose.load_state_dict(torch.load("models/t2iadapter_keypose_sd14v1.pth"))
|
208 |
|
209 |
+
self.model_ad_seg = Adapter(cin=int(3*64),channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(device)
|
210 |
+
self.model_ad_seg.load_state_dict(torch.load("models/t2iadapter_seg_sd14v1.pth""))
|
211 |
+
|
212 |
|
213 |
@torch.inference_mode()
|
214 |
def process_sketch(self, input_img, type_in, color_back, prompt, neg_prompt, fix_sample, scale, con_strength, base_model):
|
|
|
375 |
x_samples_ddim = 255.*x_samples_ddim
|
376 |
x_samples_ddim = x_samples_ddim.astype(np.uint8)
|
377 |
|
378 |
+
return [im_pose[:,:,::-1].astype(np.uint8), x_samples_ddim]
|
379 |
+
|
380 |
+
|
381 |
+
@torch.inference_mode()
|
382 |
+
def process_seg(self, input_img, prompt, neg_prompt, fix_sample, scale, con_strength, base_model):
|
383 |
+
global current_base
|
384 |
+
device = 'cuda'
|
385 |
+
if base_model == 'sd-v1-4.ckpt':
|
386 |
+
model = self.model
|
387 |
+
sampler = self.sampler
|
388 |
+
else:
|
389 |
+
model = self.model_anything
|
390 |
+
sampler = self.sampler_anything
|
391 |
+
# if current_base != base_model:
|
392 |
+
# ckpt = os.path.join("models", base_model)
|
393 |
+
# pl_sd = torch.load(ckpt, map_location="cpu")
|
394 |
+
# if "state_dict" in pl_sd:
|
395 |
+
# sd = pl_sd["state_dict"]
|
396 |
+
# else:
|
397 |
+
# sd = pl_sd
|
398 |
+
# model.load_state_dict(sd, strict=False) #load_model_from_config(config, os.path.join("models", base_model)).to(device)
|
399 |
+
# current_base = base_model
|
400 |
+
con_strength = int((1-con_strength)*50)
|
401 |
+
if fix_sample == 'True':
|
402 |
+
seed_everything(42)
|
403 |
+
|
404 |
+
im = cv2.resize(input_img,(512,512))
|
405 |
+
mask = im.copy()
|
406 |
+
mask = img2tensor(mask, bgr2rgb=True, float32=True)/255.
|
407 |
+
mask = mask.unsqueeze(0)
|
408 |
+
|
409 |
+
im_mask = tensor2img(mask)
|
410 |
+
|
411 |
+
c = model.get_learned_conditioning([prompt])
|
412 |
+
nc = model.get_learned_conditioning([neg_prompt])
|
413 |
+
|
414 |
+
with torch.no_grad():
|
415 |
+
# extract condition features
|
416 |
+
features_adapter = self.model_ad_seg(mask.to(device))
|
417 |
+
|
418 |
+
shape = [4, 64, 64]
|
419 |
+
|
420 |
+
# sampling
|
421 |
+
samples_ddim, _ = sampler.sample(S=50,
|
422 |
+
conditioning=c,
|
423 |
+
batch_size=1,
|
424 |
+
shape=shape,
|
425 |
+
verbose=False,
|
426 |
+
unconditional_guidance_scale=scale,
|
427 |
+
unconditional_conditioning=nc,
|
428 |
+
eta=0.0,
|
429 |
+
x_T=None,
|
430 |
+
features_adapter1=features_adapter,
|
431 |
+
mode = 'mask',
|
432 |
+
con_strength = con_strength)
|
433 |
+
|
434 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
435 |
+
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
436 |
+
x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1).cpu().numpy()[0]
|
437 |
+
x_samples_ddim = 255.*x_samples_ddim
|
438 |
+
x_samples_ddim = x_samples_ddim.astype(np.uint8)
|
439 |
+
|
440 |
+
return [im_edge, x_samples_ddim]
|