Spaces:
Running
Running
File size: 31,666 Bytes
8f38740 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 23,
"id": "d4bed9ef-4bff-4d61-a4f9-a585f377f136",
"metadata": {},
"outputs": [],
"source": [
"from PIL import Image\n",
"import requests\n",
"\n",
"import torch\n",
"from torch import nn\n",
"from transformers import AutoProcessor, CLIPVisionModel, CLIPVisionConfig, CLIPPreTrainedModel\n",
"from transformers.models.clip.modeling_clip import CLIPVisionModelOutput, CLIPVisionTransformer\n",
"from transformers import WhisperProcessor, WhisperForConditionalGeneration\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer\n",
"from typing import Optional, Union, Tuple"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "952314f0-ee9d-45e7-85b8-1e3e44c1a2fd",
"metadata": {},
"outputs": [],
"source": [
"class VisionLanguageConnector(nn.Module):\n",
" def __init__(self, hidden_size, projection_dim):\n",
" super().__init__()\n",
" self.mlp = nn.Sequential(\n",
" nn.Linear(hidden_size, hidden_size, bias=False),\n",
" nn.GELU(),\n",
" nn.Linear(hidden_size, projection_dim, bias=False)\n",
" )\n",
"\n",
" def forward(self, x):\n",
" return self.mlp(x)\n",
" \n",
"class ClipWithProjection():\n",
" config_class = CLIPVisionConfig\n",
" main_input_name = \"pixel_values\"\n",
"\n",
" def __init__(self, hidden_size, projection_dim):\n",
" super().__init__()\n",
" \n",
" self.processor = AutoProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
" self.vision_model = CLIPVisionModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
" self.vision_language_connector = VisionLanguageConnector(hidden_size, projection_dim)\n",
"\n",
" def forward(\n",
" self,\n",
" image = None,\n",
" output_attentions: Optional[bool] = None,\n",
" output_hidden_states: Optional[bool] = None,\n",
" return_dict: Optional[bool] = None,\n",
" ) -> Union[Tuple, CLIPVisionModelOutput]:\n",
" \n",
" pixel_values = self.processor(images=image, return_tensors=\"pt\")[\"pixel_values\"]\n",
" vision_outputs = self.vision_model(\n",
" pixel_values=pixel_values,\n",
" output_attentions=output_attentions,\n",
" output_hidden_states=output_hidden_states,\n",
" return_dict=return_dict,\n",
" )\n",
"\n",
" pooled_output = vision_outputs[1] # pooled_output\n",
"\n",
" image_embeds = self.vision_language_connector(pooled_output)\n",
"\n",
" return CLIPVisionModelOutput(\n",
" image_embeds=image_embeds,\n",
" last_hidden_state=vision_outputs.last_hidden_state,\n",
" hidden_states=vision_outputs.hidden_states,\n",
" attentions=vision_outputs.attentions,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "bd2889fe-be85-44a3-afe8-65b47f7a93c3",
"metadata": {},
"outputs": [],
"source": [
"url = \"http://images.cocodataset.org/val2017/000000039769.jpg\"\n",
"image = Image.open(requests.get(url, stream=True).raw)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "17c72699-fe98-4b96-b63c-5c8ab7c1a65f",
"metadata": {},
"outputs": [],
"source": [
"# model = ClipWithProjection(768, 512)\n",
"# model.forward(image)"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "70806156-38a9-45a2-bf9f-e72047a0173f",
"metadata": {},
"outputs": [],
"source": [
"class AudioLanguageConnector:\n",
" def __init__(self, projection_dim):\n",
" model_name = \"microsoft/phi-2\"\n",
" self.phi2_tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)\n",
" self.phi2_tokenizer.pad_token = self.phi2_tokenizer.eos_token\n",
" self.phi2_tokenizer.max_length = projection_dim\n",
"\n",
" def __call__(self, text):\n",
" text = f\"<audio_start> {text} <audio_end>\"\n",
" tokens = self.phi2_tokenizer(text, return_tensors=\"pt\", return_attention_mask=False)\n",
" return tokens\n",
" \n",
"\n",
"class WhisperWithProjection:\n",
" def __init__(self, projection_dim):\n",
" self.processor = WhisperProcessor.from_pretrained(\"openai/whisper-tiny\")\n",
" self.model = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-tiny\")\n",
" self.model.config.forced_decoder_ids = None\n",
" self.audio_language_connector = AudioLanguageConnector(projection_dim)\n",
" \n",
" def forward(self, audio):\n",
" input_features = self.processor(audio[\"array\"],\n",
" sampling_rate=audio[\"sampling_rate\"],\n",
" return_tensors=\"pt\").input_features\n",
" # generate token ids\n",
" predicted_ids = self.model.generate(input_features)\n",
" # decode token ids to text \n",
" transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)\n",
"\n",
" audio_embeddings = self.audio_language_connector(transcription)\n",
" return audio_embeddings"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "79cc4d98-498b-4042-bd71-143b2477733d",
"metadata": {},
"outputs": [],
"source": [
"class TextModality:\n",
" def __init__(self, projection_dim):\n",
" model_name = \"microsoft/phi-2\"\n",
" self.phi2_tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)\n",
" self.phi2_tokenizer.pad_token = self.phi2_tokenizer.eos_token\n",
" self.phi2_tokenizer.max_length = projection_dim\n",
"\n",
"\n",
" def __call__(self, text):\n",
" tokens = self.phi2_tokenizer(text, return_tensors=\"pt\", return_attention_mask=False)\n",
" return tokens"
]
},
{
"cell_type": "code",
"execution_count": 77,
"id": "ba4c4772-923f-48e8-a4af-b7d9c192dd4b",
"metadata": {},
"outputs": [],
"source": [
"class MultiModalPhi2:\n",
" def __init__(self):\n",
" self.text_modality = TextModality(projection_dim=768)\n",
" self.whisper_w_proj = WhisperWithProjection(projection_dim=512)\n",
" self.clip_w_proj = ClipWithProjection(hidden_size=768, projection_dim=768)\n",
" self.llm = self.load_llm()\n",
"\n",
" def load_llm(self):\n",
" model_name = \"microsoft/phi-2\"\n",
" \n",
" bnb_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_quant_type=\"nf4\",\n",
" bnb_4bit_compute_dtype=torch.float16)\n",
" \n",
" model = AutoModelForCausalLM.from_pretrained(\n",
" model_name,\n",
" quantization_config=bnb_config,\n",
" trust_remote_code=True,\n",
" device_map=\"cuda:0\"\n",
" )\n",
" model.config.use_cache = False\n",
" return model\n",
"\n",
" def forward(self, audio, image, text):\n",
" if text is not None:\n",
" text_embed = self.text_modality(text)[\"input_ids\"]\n",
" if audio is not None:\n",
" audio_embed = self.whisper_w_proj.forward(audio)[\"input_ids\"]\n",
" if image is not None:\n",
" image_embed = self.clip_w_proj.forward(image)[0]\n",
" print(text_embed.shape, text_embed.dtype)\n",
" print(audio_embed.shape, audio_embed.dtype)\n",
" print(image_embed.shape, image_embed.dtype)\n",
" \n",
" inputs = torch.concat([text_embed, audio_embed, image_embed], dim=1)\n",
" print(inputs.shape, inputs.dtype)\n",
" outputs = self.llm(inputs)\n",
"\n",
" return outputs \n",
" \n",
"\n",
" def generate(self, audio, text):\n",
" text_embeddings = self.text_modality(text)\n",
" audio_embeddings = self.whisper_w_proj.forward(audio)\n",
" inputs = torch.concat([text_embed[\"input_ids\"], audio_embed[\"input_ids\"]], dim=1)\n",
" \n",
" outputs = self.llm.generate(inputs, max_length=200)\n",
" text = self.text_modality.phi2_tokenizer.batch_decode(outputs)[0]\n",
" print(text)"
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "7ca694eb-8009-4eb9-9a4c-eac406ab9584",
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"audio_ds = load_dataset(\"hf-internal-testing/librispeech_asr_dummy\", \"clean\", split=\"validation\")\n",
"audio = audio_ds[0][\"audio\"]"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "37be28c5-4cc3-4471-b394-032c7602accc",
"metadata": {},
"outputs": [],
"source": [
"text = \"explain about the audio\""
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "c0705114-1670-4937-bc3e-3660e5a5d2c5",
"metadata": {},
"outputs": [],
"source": [
"# image"
]
},
{
"cell_type": "code",
"execution_count": 78,
"id": "0d7e5b49-b4bd-477c-87b8-91ef70857677",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n",
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "733dc7b2208b4853a89aea49bff9a55c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model = MultiModalPhi2()"
]
},
{
"cell_type": "code",
"execution_count": 79,
"id": "0b6471c4-4553-47f3-b38f-46057dcf80f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([1, 5]) torch.int64\n",
"torch.Size([1, 33]) torch.int64\n",
"torch.Size([1, 768]) torch.float32\n",
"torch.Size([1, 806]) torch.float32\n"
]
},
{
"ename": "RuntimeError",
"evalue": "Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding)",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[79], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mforward\u001b[49m\u001b[43m(\u001b[49m\u001b[43maudio\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mimage\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtext\u001b[49m\u001b[43m)\u001b[49m\n",
"Cell \u001b[0;32mIn[77], line 38\u001b[0m, in \u001b[0;36mMultiModalPhi2.forward\u001b[0;34m(self, audio, image, text)\u001b[0m\n\u001b[1;32m 36\u001b[0m inputs \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mconcat([text_embed, audio_embed, image_embed], dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 37\u001b[0m \u001b[38;5;28mprint\u001b[39m(inputs\u001b[38;5;241m.\u001b[39mshape, inputs\u001b[38;5;241m.\u001b[39mdtype)\n\u001b[0;32m---> 38\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mllm\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 40\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m outputs\n",
"File \u001b[0;32m~/miniconda3/envs/torchenv/lib/python3.10/site-packages/torch/nn/modules/module.py:1518\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1516\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1517\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1518\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/torchenv/lib/python3.10/site-packages/torch/nn/modules/module.py:1527\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1522\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1523\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1524\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1525\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1526\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1527\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1529\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1530\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda3/envs/torchenv/lib/python3.10/site-packages/accelerate/hooks.py:165\u001b[0m, in \u001b[0;36madd_hook_to_module.<locals>.new_forward\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 163\u001b[0m output \u001b[38;5;241m=\u001b[39m old_forward(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 164\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 165\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[43mold_forward\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 166\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m module\u001b[38;5;241m.\u001b[39m_hf_hook\u001b[38;5;241m.\u001b[39mpost_forward(module, output)\n",
"File \u001b[0;32m~/.cache/huggingface/modules/transformers_modules/microsoft/phi-2/85d00b03fee509307549d823fdd095473ba5197c/modeling_phi.py:1049\u001b[0m, in \u001b[0;36mPhiForCausalLM.forward\u001b[0;34m(self, input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 1046\u001b[0m return_dict \u001b[38;5;241m=\u001b[39m return_dict \u001b[38;5;28;01mif\u001b[39;00m return_dict \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39muse_return_dict\n\u001b[1;32m 1048\u001b[0m \u001b[38;5;66;03m# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)\u001b[39;00m\n\u001b[0;32m-> 1049\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1050\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_ids\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_ids\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1051\u001b[0m \u001b[43m \u001b[49m\u001b[43mattention_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1052\u001b[0m \u001b[43m \u001b[49m\u001b[43mposition_ids\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mposition_ids\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1053\u001b[0m \u001b[43m \u001b[49m\u001b[43mpast_key_values\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpast_key_values\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1054\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs_embeds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs_embeds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1055\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_cache\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_cache\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1056\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_attentions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1057\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_hidden_states\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_hidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1058\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_dict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1059\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1061\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m outputs[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 1062\u001b[0m logits \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlm_head(hidden_states)\n",
"File \u001b[0;32m~/miniconda3/envs/torchenv/lib/python3.10/site-packages/torch/nn/modules/module.py:1518\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1516\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1517\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1518\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/torchenv/lib/python3.10/site-packages/torch/nn/modules/module.py:1527\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1522\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1523\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1524\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1525\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1526\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1527\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1529\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1530\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda3/envs/torchenv/lib/python3.10/site-packages/accelerate/hooks.py:165\u001b[0m, in \u001b[0;36madd_hook_to_module.<locals>.new_forward\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 163\u001b[0m output \u001b[38;5;241m=\u001b[39m old_forward(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 164\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 165\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[43mold_forward\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 166\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m module\u001b[38;5;241m.\u001b[39m_hf_hook\u001b[38;5;241m.\u001b[39mpost_forward(module, output)\n",
"File \u001b[0;32m~/.cache/huggingface/modules/transformers_modules/microsoft/phi-2/85d00b03fee509307549d823fdd095473ba5197c/modeling_phi.py:893\u001b[0m, in \u001b[0;36mPhiModel.forward\u001b[0;34m(self, input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, use_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 890\u001b[0m position_ids \u001b[38;5;241m=\u001b[39m position_ids\u001b[38;5;241m.\u001b[39munsqueeze(\u001b[38;5;241m0\u001b[39m)\n\u001b[1;32m 892\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inputs_embeds \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 893\u001b[0m inputs_embeds \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43membed_tokens\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_ids\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 895\u001b[0m inputs_embeds \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membed_dropout(inputs_embeds)\n\u001b[1;32m 897\u001b[0m \u001b[38;5;66;03m# Attention mask.\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda3/envs/torchenv/lib/python3.10/site-packages/torch/nn/modules/module.py:1518\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1516\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1517\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1518\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/torchenv/lib/python3.10/site-packages/torch/nn/modules/module.py:1527\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1522\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1523\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1524\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1525\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1526\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1527\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1529\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1530\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda3/envs/torchenv/lib/python3.10/site-packages/accelerate/hooks.py:165\u001b[0m, in \u001b[0;36madd_hook_to_module.<locals>.new_forward\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 163\u001b[0m output \u001b[38;5;241m=\u001b[39m old_forward(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 164\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 165\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[43mold_forward\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 166\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m module\u001b[38;5;241m.\u001b[39m_hf_hook\u001b[38;5;241m.\u001b[39mpost_forward(module, output)\n",
"File \u001b[0;32m~/miniconda3/envs/torchenv/lib/python3.10/site-packages/torch/nn/modules/sparse.py:162\u001b[0m, in \u001b[0;36mEmbedding.forward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m: Tensor) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Tensor:\n\u001b[0;32m--> 162\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mF\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43membedding\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 163\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mweight\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpadding_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmax_norm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 164\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnorm_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mscale_grad_by_freq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msparse\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/torchenv/lib/python3.10/site-packages/torch/nn/functional.py:2233\u001b[0m, in \u001b[0;36membedding\u001b[0;34m(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse)\u001b[0m\n\u001b[1;32m 2227\u001b[0m \u001b[38;5;66;03m# Note [embedding_renorm set_grad_enabled]\u001b[39;00m\n\u001b[1;32m 2228\u001b[0m \u001b[38;5;66;03m# XXX: equivalent to\u001b[39;00m\n\u001b[1;32m 2229\u001b[0m \u001b[38;5;66;03m# with torch.no_grad():\u001b[39;00m\n\u001b[1;32m 2230\u001b[0m \u001b[38;5;66;03m# torch.embedding_renorm_\u001b[39;00m\n\u001b[1;32m 2231\u001b[0m \u001b[38;5;66;03m# remove once script supports set_grad_enabled\u001b[39;00m\n\u001b[1;32m 2232\u001b[0m _no_grad_embedding_renorm_(weight, \u001b[38;5;28minput\u001b[39m, max_norm, norm_type)\n\u001b[0;32m-> 2233\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43membedding\u001b[49m\u001b[43m(\u001b[49m\u001b[43mweight\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpadding_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mscale_grad_by_freq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msparse\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mRuntimeError\u001b[0m: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding)"
]
}
],
"source": [
"model.forward(audio, image, text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4ca96caf-82e2-4f07-87b3-8654dfdc89aa",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|