Spaces:
Running
Running
ravi.naik
commited on
Commit
•
667ae00
1
Parent(s):
e752318
Fixed relative import issues
Browse files- .gitignore +160 -0
- README.md +32 -1
- inference/model/builder.py +103 -44
- inference/model/language_model/configuration_llava_phi.py +41 -29
- inference/model/llava_arch.py +161 -39
- inference/model/multimodal_encoder/clip_encoder.py +1 -1
- requirements.txt +0 -1
.gitignore
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
README.md
CHANGED
@@ -9,5 +9,36 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
+
## Phi2 : Multimodal Finetuning
|
13 |
+
### Details
|
14 |
+
1. LLM Backbone: Phi2
|
15 |
+
2. Vision Tower: clip-vit-large-patch14-336
|
16 |
+
3. Audio Model: Whisper
|
17 |
+
4. Pretraining Dataset: LAION-CC-SBU dataset with BLIP captions(200k samples)
|
18 |
+
5. Finetuning Dataset: Instruct 150k dataset based on COCO
|
19 |
|
20 |
+
### Design
|
21 |
+
![image](https://github.com/RaviNaik/ERA-CAPSTONE/assets/23289802/56df24cd-2681-4e17-ab64-9652f609b15f)
|
22 |
+
|
23 |
+
### Pretraining
|
24 |
+
#### Training Loss Curve
|
25 |
+
![image](https://github.com/RaviNaik/ERA-CAPSTONE/assets/23289802/b6c37a95-0a56-4b52-8719-3ff56dc1b703)
|
26 |
+
|
27 |
+
#### Learing Rate
|
28 |
+
![image](https://github.com/RaviNaik/ERA-CAPSTONE/assets/23289802/44d9a11b-b28d-47e1-ba1d-d6dc22ebe748)
|
29 |
+
|
30 |
+
#### Training Logs
|
31 |
+
![image](https://github.com/RaviNaik/ERA-CAPSTONE/assets/23289802/76543d98-d9fe-4c1a-ac47-3d06e48053ad)
|
32 |
+
|
33 |
+
### Finetuning
|
34 |
+
#### Training Loss Curve
|
35 |
+
![image](https://github.com/RaviNaik/ERA-CAPSTONE/assets/23289802/45ef40bd-fae5-4cfe-a522-c0eed2833230)
|
36 |
+
|
37 |
+
#### Learing Rate
|
38 |
+
![image](https://github.com/RaviNaik/ERA-CAPSTONE/assets/23289802/df60ee62-a537-4e36-a7f7-f7111e101162)
|
39 |
+
|
40 |
+
#### Training Logs
|
41 |
+
![image](https://github.com/RaviNaik/ERA-CAPSTONE/assets/23289802/2747acce-bc99-4c37-a05a-d5e81cb9aa9d)
|
42 |
+
|
43 |
+
### Results
|
44 |
+
![image](https://github.com/RaviNaik/ERA-CAPSTONE/assets/23289802/f12a9f04-df32-413e-b957-774c30381b2b)
|
inference/model/builder.py
CHANGED
@@ -1,105 +1,162 @@
|
|
1 |
import os
|
2 |
import warnings
|
3 |
-
import shutil
|
4 |
|
5 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
-
from llava_phi
|
8 |
-
from
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
kwargs = {"device_map": device_map}
|
13 |
if load_8bit:
|
14 |
-
kwargs[
|
15 |
elif load_4bit:
|
16 |
-
kwargs[
|
17 |
-
kwargs[
|
18 |
load_in_4bit=True,
|
19 |
bnb_4bit_compute_dtype=torch.float16,
|
20 |
bnb_4bit_use_double_quant=True,
|
21 |
-
bnb_4bit_quant_type=
|
22 |
)
|
23 |
# else: # TODO: after fine-tuning LLava-Phi, load the model weights with fp16 will pose nan
|
24 |
# kwargs['torch_dtype'] = torch.float16
|
25 |
|
26 |
-
if
|
27 |
# Load LLaVA-Phi model
|
28 |
-
if
|
29 |
-
warnings.warn(
|
30 |
-
|
|
|
|
|
31 |
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
32 |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
33 |
-
print(
|
34 |
-
model = LlavaPhiForCausalLM.from_pretrained(
|
|
|
|
|
35 |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
36 |
if model.lm_head.weight.shape[0] != token_num:
|
37 |
-
model.lm_head.weight = torch.nn.Parameter(
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
print(
|
41 |
-
if os.path.exists(os.path.join(model_path,
|
42 |
-
non_lora_trainables = torch.load(
|
|
|
|
|
|
|
43 |
else:
|
44 |
# this is probably from HF Hub
|
45 |
from huggingface_hub import hf_hub_download
|
|
|
46 |
def load_from_hf(repo_id, filename, subfolder=None):
|
47 |
cache_file = hf_hub_download(
|
48 |
-
repo_id=repo_id,
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
non_lora_trainables = load_from_hf(
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
model.load_state_dict(non_lora_trainables, strict=False)
|
57 |
|
58 |
from peft import PeftModel
|
59 |
-
|
|
|
60 |
model = PeftModel.from_pretrained(model, model_path)
|
61 |
-
print(
|
62 |
model = model.merge_and_unload()
|
63 |
-
print(
|
64 |
elif model_base is not None:
|
65 |
# this may be mm projector only
|
66 |
-
print(
|
67 |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
68 |
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
69 |
-
model = LlavaPhiForCausalLM.from_pretrained(
|
|
|
|
|
70 |
|
71 |
-
mm_projector_weights = torch.load(
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
model.load_state_dict(mm_projector_weights, strict=False)
|
74 |
else:
|
75 |
print("load llaVA-Phi MLLM!!!")
|
76 |
config = LlavaPhiConfig.from_pretrained(model_path, trust_remote_code=True)
|
77 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
78 |
model = LlavaPhiForCausalLM.from_pretrained(
|
79 |
-
model_path,
|
80 |
-
|
81 |
-
use_safetensors=True,
|
82 |
-
**kwargs).to("cuda")
|
83 |
else:
|
84 |
# Load language model
|
85 |
if model_base is not None:
|
86 |
# PEFT model
|
87 |
from peft import PeftModel
|
|
|
88 |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
89 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
90 |
print(f"Loading LoRA weights from {model_path}")
|
91 |
model = PeftModel.from_pretrained(model, model_path)
|
92 |
print(f"Merging weights")
|
93 |
model = model.merge_and_unload()
|
94 |
-
print(
|
95 |
model.to(torch.float16)
|
96 |
else:
|
97 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
98 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
99 |
|
100 |
image_processor = CLIPImageProcessor.from_pretrained(model_path)
|
101 |
|
102 |
-
if
|
103 |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
104 |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
105 |
|
@@ -107,7 +164,9 @@ def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, l
|
|
107 |
if mm_use_im_patch_token:
|
108 |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
109 |
if mm_use_im_start_end:
|
110 |
-
tokenizer.add_tokens(
|
|
|
|
|
111 |
# model.resize_token_embeddings(len(tokenizer))
|
112 |
else:
|
113 |
raise ValueError(f"Unsupported model name: {model_name}")
|
|
|
1 |
import os
|
2 |
import warnings
|
|
|
3 |
|
4 |
+
from transformers import (
|
5 |
+
AutoTokenizer,
|
6 |
+
AutoModelForCausalLM,
|
7 |
+
AutoConfig,
|
8 |
+
BitsAndBytesConfig,
|
9 |
+
CLIPImageProcessor,
|
10 |
+
)
|
11 |
import torch
|
12 |
+
from .language_model.llava_phi import LlavaPhiForCausalLM
|
13 |
+
from .language_model.configuration_llava_phi import LlavaPhiConfig
|
14 |
|
15 |
+
IGNORE_INDEX = -100
|
16 |
+
IMAGE_TOKEN_INDEX = -200
|
17 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
18 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
19 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
20 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
21 |
|
22 |
+
|
23 |
+
def load_pretrained_model(
|
24 |
+
model_path,
|
25 |
+
model_base,
|
26 |
+
model_name,
|
27 |
+
load_8bit=False,
|
28 |
+
load_4bit=False,
|
29 |
+
device_map="cuda",
|
30 |
+
device="cuda",
|
31 |
+
):
|
32 |
kwargs = {"device_map": device_map}
|
33 |
if load_8bit:
|
34 |
+
kwargs["load_in_8bit"] = True
|
35 |
elif load_4bit:
|
36 |
+
kwargs["load_in_4bit"] = True
|
37 |
+
kwargs["quantization_config"] = BitsAndBytesConfig(
|
38 |
load_in_4bit=True,
|
39 |
bnb_4bit_compute_dtype=torch.float16,
|
40 |
bnb_4bit_use_double_quant=True,
|
41 |
+
bnb_4bit_quant_type="nf4",
|
42 |
)
|
43 |
# else: # TODO: after fine-tuning LLava-Phi, load the model weights with fp16 will pose nan
|
44 |
# kwargs['torch_dtype'] = torch.float16
|
45 |
|
46 |
+
if "phi" in model_name.lower():
|
47 |
# Load LLaVA-Phi model
|
48 |
+
if "lora" in model_name.lower() and model_base is None:
|
49 |
+
warnings.warn(
|
50 |
+
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument."
|
51 |
+
)
|
52 |
+
if "lora" in model_name.lower() and model_base is not None:
|
53 |
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
54 |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
55 |
+
print("Loading LLaVA-Phi from base model...")
|
56 |
+
model = LlavaPhiForCausalLM.from_pretrained(
|
57 |
+
model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs
|
58 |
+
)
|
59 |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
60 |
if model.lm_head.weight.shape[0] != token_num:
|
61 |
+
model.lm_head.weight = torch.nn.Parameter(
|
62 |
+
torch.empty(
|
63 |
+
token_num, tokem_dim, device=model.device, dtype=model.dtype
|
64 |
+
)
|
65 |
+
)
|
66 |
+
model.model.embed_tokens.weight = torch.nn.Parameter(
|
67 |
+
torch.empty(
|
68 |
+
token_num, tokem_dim, device=model.device, dtype=model.dtype
|
69 |
+
)
|
70 |
+
)
|
71 |
|
72 |
+
print("Loading additional LLaVA-Phi weights...")
|
73 |
+
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
|
74 |
+
non_lora_trainables = torch.load(
|
75 |
+
os.path.join(model_path, "non_lora_trainables.bin"),
|
76 |
+
map_location="cpu",
|
77 |
+
)
|
78 |
else:
|
79 |
# this is probably from HF Hub
|
80 |
from huggingface_hub import hf_hub_download
|
81 |
+
|
82 |
def load_from_hf(repo_id, filename, subfolder=None):
|
83 |
cache_file = hf_hub_download(
|
84 |
+
repo_id=repo_id, filename=filename, subfolder=subfolder
|
85 |
+
)
|
86 |
+
return torch.load(cache_file, map_location="cpu")
|
87 |
+
|
88 |
+
non_lora_trainables = load_from_hf(
|
89 |
+
model_path, "non_lora_trainables.bin"
|
90 |
+
)
|
91 |
+
non_lora_trainables = {
|
92 |
+
(k[11:] if k.startswith("base_model.") else k): v
|
93 |
+
for k, v in non_lora_trainables.items()
|
94 |
+
}
|
95 |
+
if any(k.startswith("model.model.") for k in non_lora_trainables):
|
96 |
+
non_lora_trainables = {
|
97 |
+
(k[6:] if k.startswith("model.") else k): v
|
98 |
+
for k, v in non_lora_trainables.items()
|
99 |
+
}
|
100 |
model.load_state_dict(non_lora_trainables, strict=False)
|
101 |
|
102 |
from peft import PeftModel
|
103 |
+
|
104 |
+
print("Loading LoRA weights...")
|
105 |
model = PeftModel.from_pretrained(model, model_path)
|
106 |
+
print("Merging LoRA weights...")
|
107 |
model = model.merge_and_unload()
|
108 |
+
print("Model is loaded...")
|
109 |
elif model_base is not None:
|
110 |
# this may be mm projector only
|
111 |
+
print("Loading LLaVA-Phi from base model...")
|
112 |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
113 |
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
114 |
+
model = LlavaPhiForCausalLM.from_pretrained(
|
115 |
+
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
|
116 |
+
)
|
117 |
|
118 |
+
mm_projector_weights = torch.load(
|
119 |
+
os.path.join(model_path, "mm_projector.bin"), map_location="cpu"
|
120 |
+
)
|
121 |
+
mm_projector_weights = {
|
122 |
+
k: v.to(torch.float16) for k, v in mm_projector_weights.items()
|
123 |
+
}
|
124 |
model.load_state_dict(mm_projector_weights, strict=False)
|
125 |
else:
|
126 |
print("load llaVA-Phi MLLM!!!")
|
127 |
config = LlavaPhiConfig.from_pretrained(model_path, trust_remote_code=True)
|
128 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
129 |
model = LlavaPhiForCausalLM.from_pretrained(
|
130 |
+
model_path, config=config, use_safetensors=True, **kwargs
|
131 |
+
).to("cuda")
|
|
|
|
|
132 |
else:
|
133 |
# Load language model
|
134 |
if model_base is not None:
|
135 |
# PEFT model
|
136 |
from peft import PeftModel
|
137 |
+
|
138 |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
139 |
+
model = AutoModelForCausalLM.from_pretrained(
|
140 |
+
model_base,
|
141 |
+
torch_dtype=torch.float16,
|
142 |
+
low_cpu_mem_usage=True,
|
143 |
+
device_map="auto",
|
144 |
+
)
|
145 |
print(f"Loading LoRA weights from {model_path}")
|
146 |
model = PeftModel.from_pretrained(model, model_path)
|
147 |
print(f"Merging weights")
|
148 |
model = model.merge_and_unload()
|
149 |
+
print("Convert to FP16...")
|
150 |
model.to(torch.float16)
|
151 |
else:
|
152 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
153 |
+
model = AutoModelForCausalLM.from_pretrained(
|
154 |
+
model_path, low_cpu_mem_usage=True, **kwargs
|
155 |
+
)
|
156 |
|
157 |
image_processor = CLIPImageProcessor.from_pretrained(model_path)
|
158 |
|
159 |
+
if "phi" in model_name.lower():
|
160 |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
161 |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
162 |
|
|
|
164 |
if mm_use_im_patch_token:
|
165 |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
166 |
if mm_use_im_start_end:
|
167 |
+
tokenizer.add_tokens(
|
168 |
+
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
|
169 |
+
)
|
170 |
# model.resize_token_embeddings(len(tokenizer))
|
171 |
else:
|
172 |
raise ValueError(f"Unsupported model name: {model_name}")
|
inference/model/language_model/configuration_llava_phi.py
CHANGED
@@ -68,23 +68,23 @@ class LlavaPhiVisionConfig(PretrainedConfig):
|
|
68 |
model_type = "llava_phi_clip_vision_model"
|
69 |
|
70 |
def __init__(
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
):
|
89 |
super().__init__(**kwargs)
|
90 |
|
@@ -105,16 +105,24 @@ class LlavaPhiVisionConfig(PretrainedConfig):
|
|
105 |
self.mm_vision_select_layer = mm_vision_select_layer
|
106 |
|
107 |
@classmethod
|
108 |
-
def from_pretrained(
|
|
|
|
|
109 |
cls._set_token_in_kwargs(kwargs)
|
110 |
|
111 |
-
config_dict, kwargs = cls.get_config_dict(
|
|
|
|
|
112 |
|
113 |
# get the vision config dict if we are loading from CLIPConfig
|
114 |
if config_dict.get("model_type") == "llava_phi-phi":
|
115 |
config_dict = config_dict["vision_config"]
|
116 |
|
117 |
-
if
|
|
|
|
|
|
|
|
|
118 |
logger.warning(
|
119 |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
120 |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
@@ -127,11 +135,7 @@ class ProjectorConfig(PretrainedConfig):
|
|
127 |
model_type = "llava_phi_projector"
|
128 |
|
129 |
def __init__(
|
130 |
-
|
131 |
-
mm_projector_type="linear",
|
132 |
-
mm_hidden_size=768,
|
133 |
-
hidden_size=2560,
|
134 |
-
**kwargs
|
135 |
):
|
136 |
self.mm_projector_type = mm_projector_type
|
137 |
self.mm_hidden_size = mm_hidden_size
|
@@ -139,16 +143,24 @@ class ProjectorConfig(PretrainedConfig):
|
|
139 |
super().__init__(**kwargs)
|
140 |
|
141 |
@classmethod
|
142 |
-
def from_pretrained(
|
|
|
|
|
143 |
cls._set_token_in_kwargs(kwargs)
|
144 |
|
145 |
-
config_dict, kwargs = cls.get_config_dict(
|
|
|
|
|
146 |
|
147 |
# get the vision config dict if we are loading from CLIPConfig
|
148 |
if config_dict.get("model_type") == "llava_phi-phi":
|
149 |
config_dict = config_dict["projector_config"]
|
150 |
|
151 |
-
if
|
|
|
|
|
|
|
|
|
152 |
logger.warning(
|
153 |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
154 |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
@@ -159,7 +171,7 @@ class ProjectorConfig(PretrainedConfig):
|
|
159 |
|
160 |
DEFAULT_VISUAL_CONFIG = {
|
161 |
"vision_tower": LlavaPhiVisionConfig().to_dict(),
|
162 |
-
"mm_projector": ProjectorConfig().to_dict()
|
163 |
}
|
164 |
|
165 |
|
|
|
68 |
model_type = "llava_phi_clip_vision_model"
|
69 |
|
70 |
def __init__(
|
71 |
+
self,
|
72 |
+
hidden_size=768,
|
73 |
+
intermediate_size=3072,
|
74 |
+
projection_dim=512,
|
75 |
+
num_hidden_layers=12,
|
76 |
+
num_attention_heads=12,
|
77 |
+
num_channels=3,
|
78 |
+
image_size=224,
|
79 |
+
patch_size=32,
|
80 |
+
hidden_act="quick_gelu",
|
81 |
+
layer_norm_eps=1e-5,
|
82 |
+
attention_dropout=0.0,
|
83 |
+
initializer_range=0.02,
|
84 |
+
initializer_factor=1.0,
|
85 |
+
mm_vision_select_feature="patch",
|
86 |
+
mm_vision_select_layer=-2,
|
87 |
+
**kwargs,
|
88 |
):
|
89 |
super().__init__(**kwargs)
|
90 |
|
|
|
105 |
self.mm_vision_select_layer = mm_vision_select_layer
|
106 |
|
107 |
@classmethod
|
108 |
+
def from_pretrained(
|
109 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
110 |
+
) -> "PretrainedConfig":
|
111 |
cls._set_token_in_kwargs(kwargs)
|
112 |
|
113 |
+
config_dict, kwargs = cls.get_config_dict(
|
114 |
+
pretrained_model_name_or_path, **kwargs
|
115 |
+
)
|
116 |
|
117 |
# get the vision config dict if we are loading from CLIPConfig
|
118 |
if config_dict.get("model_type") == "llava_phi-phi":
|
119 |
config_dict = config_dict["vision_config"]
|
120 |
|
121 |
+
if (
|
122 |
+
"model_type" in config_dict
|
123 |
+
and hasattr(cls, "model_type")
|
124 |
+
and config_dict["model_type"] != cls.model_type
|
125 |
+
):
|
126 |
logger.warning(
|
127 |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
128 |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
|
|
135 |
model_type = "llava_phi_projector"
|
136 |
|
137 |
def __init__(
|
138 |
+
self, mm_projector_type="linear", mm_hidden_size=768, hidden_size=2560, **kwargs
|
|
|
|
|
|
|
|
|
139 |
):
|
140 |
self.mm_projector_type = mm_projector_type
|
141 |
self.mm_hidden_size = mm_hidden_size
|
|
|
143 |
super().__init__(**kwargs)
|
144 |
|
145 |
@classmethod
|
146 |
+
def from_pretrained(
|
147 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
148 |
+
) -> "PretrainedConfig":
|
149 |
cls._set_token_in_kwargs(kwargs)
|
150 |
|
151 |
+
config_dict, kwargs = cls.get_config_dict(
|
152 |
+
pretrained_model_name_or_path, **kwargs
|
153 |
+
)
|
154 |
|
155 |
# get the vision config dict if we are loading from CLIPConfig
|
156 |
if config_dict.get("model_type") == "llava_phi-phi":
|
157 |
config_dict = config_dict["projector_config"]
|
158 |
|
159 |
+
if (
|
160 |
+
"model_type" in config_dict
|
161 |
+
and hasattr(cls, "model_type")
|
162 |
+
and config_dict["model_type"] != cls.model_type
|
163 |
+
):
|
164 |
logger.warning(
|
165 |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
166 |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
|
|
171 |
|
172 |
DEFAULT_VISUAL_CONFIG = {
|
173 |
"vision_tower": LlavaPhiVisionConfig().to_dict(),
|
174 |
+
"mm_projector": ProjectorConfig().to_dict(),
|
175 |
}
|
176 |
|
177 |
|
inference/model/llava_arch.py
CHANGED
@@ -19,8 +19,19 @@ import torch
|
|
19 |
|
20 |
from .multimodal_encoder.clip_encoder import CLIPVisionTower
|
21 |
from .multimodal_projector.builder import build_vision_projector
|
22 |
-
from .language_model.configuration_llava_phi import
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
class LlavaMetaModel:
|
@@ -34,14 +45,13 @@ class LlavaMetaModel:
|
|
34 |
)
|
35 |
|
36 |
def get_vision_tower(self):
|
37 |
-
vision_tower = getattr(self,
|
38 |
if type(vision_tower) is list:
|
39 |
vision_tower = vision_tower[0]
|
40 |
return vision_tower
|
41 |
|
42 |
|
43 |
class LlavaMetaForCausalLM(ABC):
|
44 |
-
|
45 |
@abstractmethod
|
46 |
def get_model(self):
|
47 |
pass
|
@@ -59,8 +69,17 @@ class LlavaMetaForCausalLM(ABC):
|
|
59 |
):
|
60 |
vision_tower = self.get_vision_tower()
|
61 |
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
62 |
-
if
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
return input_ids, attention_mask, past_key_values, None, labels
|
65 |
|
66 |
if type(images) is list or images.ndim == 5:
|
@@ -81,9 +100,16 @@ class LlavaMetaForCausalLM(ABC):
|
|
81 |
# FIXME: this is a hacky fix, for deepspeed zero3 to work
|
82 |
half_len = cur_input_ids.shape[0] // 2
|
83 |
cur_image_features = image_features[cur_image_idx]
|
84 |
-
cur_input_embeds_1 = self.get_model().embed_tokens(
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
new_input_embeds.append(cur_input_embeds)
|
88 |
if labels is not None:
|
89 |
new_labels.append(labels[batch_idx])
|
@@ -98,37 +124,79 @@ class LlavaMetaForCausalLM(ABC):
|
|
98 |
while image_token_indices.numel() > 0:
|
99 |
cur_image_features = image_features[cur_image_idx]
|
100 |
image_token_start = image_token_indices[0]
|
101 |
-
if getattr(self.config,
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
cur_new_input_embeds.append(cur_image_features)
|
105 |
-
cur_new_input_embeds.append(
|
|
|
|
|
|
|
|
|
106 |
if labels is not None:
|
107 |
cur_new_labels.append(cur_labels[:image_token_start])
|
108 |
-
cur_new_labels.append(
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
else:
|
112 |
-
cur_new_input_embeds.append(
|
|
|
|
|
113 |
cur_new_input_embeds.append(cur_image_features)
|
114 |
if labels is not None:
|
115 |
cur_new_labels.append(cur_labels[:image_token_start])
|
116 |
-
cur_new_labels.append(
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
cur_image_idx += 1
|
119 |
-
if getattr(self.config,
|
120 |
-
|
|
|
|
|
121 |
else:
|
122 |
-
cur_input_ids = cur_input_ids[image_token_start+1:]
|
123 |
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
124 |
if cur_input_ids.numel() > 0:
|
125 |
-
if getattr(self.config,
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
else:
|
128 |
-
cur_new_input_embeds.append(
|
|
|
|
|
129 |
if labels is not None:
|
130 |
cur_new_labels.append(cur_labels)
|
131 |
-
cur_new_input_embeds = [
|
|
|
|
|
132 |
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
133 |
new_input_embeds.append(cur_new_input_embeds)
|
134 |
if labels is not None:
|
@@ -140,7 +208,17 @@ class LlavaMetaForCausalLM(ABC):
|
|
140 |
|
141 |
new_input_embeds_align = []
|
142 |
for cur_new_embed in new_input_embeds:
|
143 |
-
cur_new_embed = torch.cat(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
new_input_embeds_align.append(cur_new_embed)
|
145 |
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
146 |
|
@@ -148,27 +226,67 @@ class LlavaMetaForCausalLM(ABC):
|
|
148 |
new_labels_align = []
|
149 |
_new_labels = new_labels
|
150 |
for cur_new_label in new_labels:
|
151 |
-
cur_new_label = torch.cat(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
new_labels_align.append(cur_new_label)
|
153 |
new_labels = torch.stack(new_labels_align, dim=0)
|
154 |
|
155 |
if attention_mask is not None:
|
156 |
new_attention_mask = []
|
157 |
-
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
new_attention_mask.append(cur_new_attention_mask)
|
162 |
attention_mask = torch.stack(new_attention_mask, dim=0)
|
163 |
assert attention_mask.shape == new_labels.shape
|
164 |
else:
|
165 |
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
166 |
if labels is not None:
|
167 |
-
new_labels
|
168 |
|
169 |
if attention_mask is not None:
|
170 |
-
new_attn_mask_pad_left = torch.full(
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
assert attention_mask.shape == new_input_embeds.shape[:2]
|
173 |
|
174 |
return None, attention_mask, past_key_values, new_input_embeds, new_labels
|
@@ -179,7 +297,9 @@ class LlavaMetaForCausalLM(ABC):
|
|
179 |
self.resize_token_embeddings(len(tokenizer))
|
180 |
|
181 |
if model_args.mm_use_im_start_end:
|
182 |
-
num_new_tokens = tokenizer.add_tokens(
|
|
|
|
|
183 |
self.resize_token_embeddings(len(tokenizer))
|
184 |
|
185 |
if num_new_tokens > 0:
|
@@ -187,9 +307,11 @@ class LlavaMetaForCausalLM(ABC):
|
|
187 |
output_embeddings = self.get_output_embeddings().weight.data
|
188 |
|
189 |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
190 |
-
dim=0, keepdim=True
|
|
|
191 |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
192 |
-
dim=0, keepdim=True
|
|
|
193 |
|
194 |
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
195 |
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
@@ -199,7 +321,7 @@ class LlavaMetaForCausalLM(ABC):
|
|
199 |
p.requires_grad = True
|
200 |
for p in self.get_output_embeddings().parameters():
|
201 |
p.requires_grad = False
|
202 |
-
|
203 |
elif model_args.mm_use_im_patch_token:
|
204 |
if model_args.tune_mm_mlp_adapter:
|
205 |
for p in self.get_input_embeddings().parameters():
|
|
|
19 |
|
20 |
from .multimodal_encoder.clip_encoder import CLIPVisionTower
|
21 |
from .multimodal_projector.builder import build_vision_projector
|
22 |
+
from .language_model.configuration_llava_phi import (
|
23 |
+
LlavaPhiConfig,
|
24 |
+
LlavaPhiVisionConfig,
|
25 |
+
ProjectorConfig,
|
26 |
+
)
|
27 |
+
|
28 |
+
# from llava_phi.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
29 |
+
IGNORE_INDEX = -100
|
30 |
+
IMAGE_TOKEN_INDEX = -200
|
31 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
32 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
33 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
34 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
35 |
|
36 |
|
37 |
class LlavaMetaModel:
|
|
|
45 |
)
|
46 |
|
47 |
def get_vision_tower(self):
|
48 |
+
vision_tower = getattr(self, "vision_tower", None)
|
49 |
if type(vision_tower) is list:
|
50 |
vision_tower = vision_tower[0]
|
51 |
return vision_tower
|
52 |
|
53 |
|
54 |
class LlavaMetaForCausalLM(ABC):
|
|
|
55 |
@abstractmethod
|
56 |
def get_model(self):
|
57 |
pass
|
|
|
69 |
):
|
70 |
vision_tower = self.get_vision_tower()
|
71 |
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
72 |
+
if (
|
73 |
+
past_key_values is not None
|
74 |
+
and vision_tower is not None
|
75 |
+
and images is not None
|
76 |
+
and input_ids.shape[1] == 1
|
77 |
+
):
|
78 |
+
attention_mask = torch.ones(
|
79 |
+
(attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1),
|
80 |
+
dtype=attention_mask.dtype,
|
81 |
+
device=attention_mask.device,
|
82 |
+
)
|
83 |
return input_ids, attention_mask, past_key_values, None, labels
|
84 |
|
85 |
if type(images) is list or images.ndim == 5:
|
|
|
100 |
# FIXME: this is a hacky fix, for deepspeed zero3 to work
|
101 |
half_len = cur_input_ids.shape[0] // 2
|
102 |
cur_image_features = image_features[cur_image_idx]
|
103 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(
|
104 |
+
cur_input_ids[:half_len]
|
105 |
+
)
|
106 |
+
cur_input_embeds_2 = self.get_model().embed_tokens(
|
107 |
+
cur_input_ids[half_len:]
|
108 |
+
)
|
109 |
+
cur_input_embeds = torch.cat(
|
110 |
+
[cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2],
|
111 |
+
dim=0,
|
112 |
+
)
|
113 |
new_input_embeds.append(cur_input_embeds)
|
114 |
if labels is not None:
|
115 |
new_labels.append(labels[batch_idx])
|
|
|
124 |
while image_token_indices.numel() > 0:
|
125 |
cur_image_features = image_features[cur_image_idx]
|
126 |
image_token_start = image_token_indices[0]
|
127 |
+
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
|
128 |
+
self.config, "mm_use_im_start_end", False
|
129 |
+
):
|
130 |
+
cur_new_input_embeds.append(
|
131 |
+
self.get_model()
|
132 |
+
.embed_tokens(cur_input_ids[: image_token_start - 1])
|
133 |
+
.detach()
|
134 |
+
)
|
135 |
+
cur_new_input_embeds.append(
|
136 |
+
self.get_model().embed_tokens(
|
137 |
+
cur_input_ids[image_token_start - 1 : image_token_start]
|
138 |
+
)
|
139 |
+
)
|
140 |
cur_new_input_embeds.append(cur_image_features)
|
141 |
+
cur_new_input_embeds.append(
|
142 |
+
self.get_model().embed_tokens(
|
143 |
+
cur_input_ids[image_token_start + 1 : image_token_start + 2]
|
144 |
+
)
|
145 |
+
)
|
146 |
if labels is not None:
|
147 |
cur_new_labels.append(cur_labels[:image_token_start])
|
148 |
+
cur_new_labels.append(
|
149 |
+
torch.full(
|
150 |
+
(cur_image_features.shape[0],),
|
151 |
+
IGNORE_INDEX,
|
152 |
+
device=labels.device,
|
153 |
+
dtype=labels.dtype,
|
154 |
+
)
|
155 |
+
)
|
156 |
+
cur_new_labels.append(
|
157 |
+
cur_labels[image_token_start : image_token_start + 1]
|
158 |
+
)
|
159 |
+
cur_labels = cur_labels[image_token_start + 2 :]
|
160 |
else:
|
161 |
+
cur_new_input_embeds.append(
|
162 |
+
self.get_model().embed_tokens(cur_input_ids[:image_token_start])
|
163 |
+
)
|
164 |
cur_new_input_embeds.append(cur_image_features)
|
165 |
if labels is not None:
|
166 |
cur_new_labels.append(cur_labels[:image_token_start])
|
167 |
+
cur_new_labels.append(
|
168 |
+
torch.full(
|
169 |
+
(cur_image_features.shape[0],),
|
170 |
+
IGNORE_INDEX,
|
171 |
+
device=labels.device,
|
172 |
+
dtype=labels.dtype,
|
173 |
+
)
|
174 |
+
)
|
175 |
+
cur_labels = cur_labels[image_token_start + 1 :]
|
176 |
cur_image_idx += 1
|
177 |
+
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
|
178 |
+
self.config, "mm_use_im_start_end", False
|
179 |
+
):
|
180 |
+
cur_input_ids = cur_input_ids[image_token_start + 2 :]
|
181 |
else:
|
182 |
+
cur_input_ids = cur_input_ids[image_token_start + 1 :]
|
183 |
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
184 |
if cur_input_ids.numel() > 0:
|
185 |
+
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
|
186 |
+
self.config, "mm_use_im_start_end", False
|
187 |
+
):
|
188 |
+
cur_new_input_embeds.append(
|
189 |
+
self.get_model().embed_tokens(cur_input_ids).detach()
|
190 |
+
)
|
191 |
else:
|
192 |
+
cur_new_input_embeds.append(
|
193 |
+
self.get_model().embed_tokens(cur_input_ids)
|
194 |
+
)
|
195 |
if labels is not None:
|
196 |
cur_new_labels.append(cur_labels)
|
197 |
+
cur_new_input_embeds = [
|
198 |
+
x.to(device=self.device) for x in cur_new_input_embeds
|
199 |
+
]
|
200 |
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
201 |
new_input_embeds.append(cur_new_input_embeds)
|
202 |
if labels is not None:
|
|
|
208 |
|
209 |
new_input_embeds_align = []
|
210 |
for cur_new_embed in new_input_embeds:
|
211 |
+
cur_new_embed = torch.cat(
|
212 |
+
(
|
213 |
+
cur_new_embed,
|
214 |
+
torch.zeros(
|
215 |
+
(max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]),
|
216 |
+
dtype=cur_new_embed.dtype,
|
217 |
+
device=cur_new_embed.device,
|
218 |
+
),
|
219 |
+
),
|
220 |
+
dim=0,
|
221 |
+
)
|
222 |
new_input_embeds_align.append(cur_new_embed)
|
223 |
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
224 |
|
|
|
226 |
new_labels_align = []
|
227 |
_new_labels = new_labels
|
228 |
for cur_new_label in new_labels:
|
229 |
+
cur_new_label = torch.cat(
|
230 |
+
(
|
231 |
+
cur_new_label,
|
232 |
+
torch.full(
|
233 |
+
(max_len - cur_new_label.shape[0],),
|
234 |
+
IGNORE_INDEX,
|
235 |
+
dtype=cur_new_label.dtype,
|
236 |
+
device=cur_new_label.device,
|
237 |
+
),
|
238 |
+
),
|
239 |
+
dim=0,
|
240 |
+
)
|
241 |
new_labels_align.append(cur_new_label)
|
242 |
new_labels = torch.stack(new_labels_align, dim=0)
|
243 |
|
244 |
if attention_mask is not None:
|
245 |
new_attention_mask = []
|
246 |
+
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(
|
247 |
+
attention_mask, _new_labels, new_labels
|
248 |
+
):
|
249 |
+
new_attn_mask_pad_left = torch.full(
|
250 |
+
(cur_new_labels.shape[0] - labels.shape[1],),
|
251 |
+
True,
|
252 |
+
dtype=attention_mask.dtype,
|
253 |
+
device=attention_mask.device,
|
254 |
+
)
|
255 |
+
new_attn_mask_pad_right = torch.full(
|
256 |
+
(cur_new_labels_align.shape[0] - cur_new_labels.shape[0],),
|
257 |
+
False,
|
258 |
+
dtype=attention_mask.dtype,
|
259 |
+
device=attention_mask.device,
|
260 |
+
)
|
261 |
+
cur_new_attention_mask = torch.cat(
|
262 |
+
(
|
263 |
+
new_attn_mask_pad_left,
|
264 |
+
cur_attention_mask,
|
265 |
+
new_attn_mask_pad_right,
|
266 |
+
),
|
267 |
+
dim=0,
|
268 |
+
)
|
269 |
new_attention_mask.append(cur_new_attention_mask)
|
270 |
attention_mask = torch.stack(new_attention_mask, dim=0)
|
271 |
assert attention_mask.shape == new_labels.shape
|
272 |
else:
|
273 |
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
274 |
if labels is not None:
|
275 |
+
new_labels = torch.stack(new_labels, dim=0)
|
276 |
|
277 |
if attention_mask is not None:
|
278 |
+
new_attn_mask_pad_left = torch.full(
|
279 |
+
(
|
280 |
+
attention_mask.shape[0],
|
281 |
+
new_input_embeds.shape[1] - input_ids.shape[1],
|
282 |
+
),
|
283 |
+
True,
|
284 |
+
dtype=attention_mask.dtype,
|
285 |
+
device=attention_mask.device,
|
286 |
+
)
|
287 |
+
attention_mask = torch.cat(
|
288 |
+
(new_attn_mask_pad_left, attention_mask), dim=1
|
289 |
+
)
|
290 |
assert attention_mask.shape == new_input_embeds.shape[:2]
|
291 |
|
292 |
return None, attention_mask, past_key_values, new_input_embeds, new_labels
|
|
|
297 |
self.resize_token_embeddings(len(tokenizer))
|
298 |
|
299 |
if model_args.mm_use_im_start_end:
|
300 |
+
num_new_tokens = tokenizer.add_tokens(
|
301 |
+
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
|
302 |
+
)
|
303 |
self.resize_token_embeddings(len(tokenizer))
|
304 |
|
305 |
if num_new_tokens > 0:
|
|
|
307 |
output_embeddings = self.get_output_embeddings().weight.data
|
308 |
|
309 |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
310 |
+
dim=0, keepdim=True
|
311 |
+
)
|
312 |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
313 |
+
dim=0, keepdim=True
|
314 |
+
)
|
315 |
|
316 |
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
317 |
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
|
|
321 |
p.requires_grad = True
|
322 |
for p in self.get_output_embeddings().parameters():
|
323 |
p.requires_grad = False
|
324 |
+
|
325 |
elif model_args.mm_use_im_patch_token:
|
326 |
if model_args.tune_mm_mlp_adapter:
|
327 |
for p in self.get_input_embeddings().parameters():
|
inference/model/multimodal_encoder/clip_encoder.py
CHANGED
@@ -5,7 +5,7 @@ import torch.nn as nn
|
|
5 |
|
6 |
from transformers import CLIPPreTrainedModel, CLIPVisionConfig
|
7 |
from transformers.models.clip.modeling_clip import CLIPVisionTransformer
|
8 |
-
from
|
9 |
|
10 |
|
11 |
class CLIPVisionTower(CLIPPreTrainedModel):
|
|
|
5 |
|
6 |
from transformers import CLIPPreTrainedModel, CLIPVisionConfig
|
7 |
from transformers.models.clip.modeling_clip import CLIPVisionTransformer
|
8 |
+
from inference.model.language_model.configuration_llava_phi import LlavaPhiVisionConfig
|
9 |
|
10 |
|
11 |
class CLIPVisionTower(CLIPPreTrainedModel):
|
requirements.txt
CHANGED
@@ -6,7 +6,6 @@ gradio_client==0.2.9
|
|
6 |
markdown2[all]
|
7 |
numpy
|
8 |
requests
|
9 |
-
sentencepiece
|
10 |
tokenizers==0.15.0
|
11 |
torch==2.0.1
|
12 |
shortuuid
|
|
|
6 |
markdown2[all]
|
7 |
numpy
|
8 |
requests
|
|
|
9 |
tokenizers==0.15.0
|
10 |
torch==2.0.1
|
11 |
shortuuid
|