Spaces:
Sleeping
Sleeping
RaymundoSGlz
commited on
Commit
•
17fb818
1
Parent(s):
6986302
Update utils.py
Browse files
utils.py
CHANGED
@@ -5,7 +5,6 @@ import torch
|
|
5 |
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
-
model_id = "ceyda/butterfly_cropped_uniq1K_512"
|
9 |
CONFIG_NAME = "config.json"
|
10 |
revision = None
|
11 |
cache_dir = None
|
@@ -16,39 +15,7 @@ local_files_only = False
|
|
16 |
token = None
|
17 |
|
18 |
|
19 |
-
|
20 |
-
config_file = hf_hub_download(
|
21 |
-
repo_id=str(model_id),
|
22 |
-
filename=CONFIG_NAME,
|
23 |
-
revision=revision,
|
24 |
-
cache_dir=cache_dir,
|
25 |
-
force_download=force_download,
|
26 |
-
proxies=proxies,
|
27 |
-
resume_download=resume_download,
|
28 |
-
token=token,
|
29 |
-
local_files_only=local_files_only,
|
30 |
-
)
|
31 |
-
with open(config_file, "r", encoding="utf-8") as f:
|
32 |
-
config = json.load(f)
|
33 |
-
|
34 |
-
# Call the _from_pretrained with all the needed arguments
|
35 |
-
gan = LightweightGAN(latent_dim=256, image_size=512)
|
36 |
-
|
37 |
-
gan = gan._from_pretrained(
|
38 |
-
model_id=str(model_id),
|
39 |
-
revision=revision,
|
40 |
-
cache_dir=cache_dir,
|
41 |
-
force_download=force_download,
|
42 |
-
proxies=proxies,
|
43 |
-
resume_download=resume_download,
|
44 |
-
local_files_only=local_files_only,
|
45 |
-
token=token,
|
46 |
-
use_auth_token=False,
|
47 |
-
config=config, # usually in **model_kwargs
|
48 |
-
)
|
49 |
-
|
50 |
-
|
51 |
-
def carga_modelo(model_name=model_id, model_version=None):
|
52 |
"""
|
53 |
Loads a pre-trained LightweightGAN model from Hugging Face Model Hub.
|
54 |
|
@@ -59,6 +26,37 @@ def carga_modelo(model_name=model_id, model_version=None):
|
|
59 |
Returns:
|
60 |
LightweightGAN: The loaded pre-trained model.
|
61 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
gan.eval()
|
63 |
return gan
|
64 |
|
@@ -78,4 +76,3 @@ def genera(gan, batch_size=1):
|
|
78 |
ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0) * 255
|
79 |
ims = ims.permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8)
|
80 |
return ims
|
81 |
-
|
|
|
5 |
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
|
|
8 |
CONFIG_NAME = "config.json"
|
9 |
revision = None
|
10 |
cache_dir = None
|
|
|
15 |
token = None
|
16 |
|
17 |
|
18 |
+
def carga_modelo(model_name="ceyda/butterfly_cropped_uniq1K_512"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"""
|
20 |
Loads a pre-trained LightweightGAN model from Hugging Face Model Hub.
|
21 |
|
|
|
26 |
Returns:
|
27 |
LightweightGAN: The loaded pre-trained model.
|
28 |
"""
|
29 |
+
# Load the config
|
30 |
+
config_file = hf_hub_download(
|
31 |
+
repo_id=str(model_name),
|
32 |
+
filename=CONFIG_NAME,
|
33 |
+
revision=revision,
|
34 |
+
cache_dir=cache_dir,
|
35 |
+
force_download=force_download,
|
36 |
+
proxies=proxies,
|
37 |
+
resume_download=resume_download,
|
38 |
+
token=token,
|
39 |
+
local_files_only=local_files_only,
|
40 |
+
)
|
41 |
+
with open(config_file, "r", encoding="utf-8") as f:
|
42 |
+
config = json.load(f)
|
43 |
+
|
44 |
+
# Call the _from_pretrained with all the needed arguments
|
45 |
+
gan = LightweightGAN(latent_dim=256, image_size=512)
|
46 |
+
|
47 |
+
gan = gan._from_pretrained(
|
48 |
+
model_id=str(model_name),
|
49 |
+
revision=revision,
|
50 |
+
cache_dir=cache_dir,
|
51 |
+
force_download=force_download,
|
52 |
+
proxies=proxies,
|
53 |
+
resume_download=resume_download,
|
54 |
+
local_files_only=local_files_only,
|
55 |
+
token=token,
|
56 |
+
use_auth_token=False,
|
57 |
+
config=config, # usually in **model_kwargs
|
58 |
+
)
|
59 |
+
|
60 |
gan.eval()
|
61 |
return gan
|
62 |
|
|
|
76 |
ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0) * 255
|
77 |
ims = ims.permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8)
|
78 |
return ims
|
|