Spaces:
Running
Running
File size: 3,046 Bytes
2507d2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import sys
import torch
import subprocess
import numpy as np
from pathlib import Path
from .. import logger
from ..utils.base_model import BaseModel
omniglue_path = Path(__file__).parent / "../../third_party/omniglue"
sys.path.append(str(omniglue_path))
from src import omniglue
class OmniGlue(BaseModel):
default_conf = {
"match_threshold": 0.02,
"max_keypoints": 2048,
}
required_inputs = ["image0", "image1"]
dino_v2_link_dict = {
"dinov2_vitb14_pretrain.pth": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_pretrain.pth"
}
def _init(self, conf):
logger.info(f"Loadeding OmniGlue model")
og_model_path = omniglue_path / "models" / "omniglue.onnx"
sp_model_path = omniglue_path / "models" / "sp_v6.onnx"
dino_model_path = (
omniglue_path / "models" / "dinov2_vitb14_pretrain.pth" # ~330MB
)
if not dino_model_path.exists():
link = self.dino_v2_link_dict.get(dino_model_path.name, None)
if link is not None:
cmd = ["wget", link, "-O", str(dino_model_path)]
logger.info(f"Downloading the dinov2 model with `{cmd}`.")
subprocess.run(cmd, check=True)
else:
logger.error(f"Invalid dinov2 model: {dino_model_path.name}")
self.net = omniglue.OmniGlue(
og_export=str(og_model_path),
sp_export=str(sp_model_path),
dino_export=str(dino_model_path),
max_keypoints=self.conf["max_keypoints"] * 4,
)
logger.info(f"Loaded OmniGlue model done!")
def _forward(self, data):
image0_rgb_np = data["image0"][0].permute(1, 2, 0).cpu().numpy() * 255
image1_rgb_np = data["image1"][0].permute(1, 2, 0).cpu().numpy() * 255
image0_rgb_np = image0_rgb_np.astype(np.uint8) # RGB, 0-255
image1_rgb_np = image1_rgb_np.astype(np.uint8) # RGB, 0-255
match_kp0, match_kp1, match_confidences = self.net.FindMatches(
image0_rgb_np, image1_rgb_np
)
# filter matches
match_threshold = self.conf["match_threshold"]
keep_idx = []
for i in range(match_kp0.shape[0]):
if match_confidences[i] > match_threshold:
keep_idx.append(i)
num_filtered_matches = len(keep_idx)
scores = torch.from_numpy(match_confidences[keep_idx]).reshape(-1, 1)
pred = {
"keypoints0": torch.from_numpy(match_kp0[keep_idx]),
"keypoints1": torch.from_numpy(match_kp1[keep_idx]),
"mconf": scores,
}
top_k = self.conf["max_keypoints"]
if top_k is not None and len(scores) > top_k:
keep = torch.argsort(scores, descending=True)[:top_k]
scores = scores[keep]
pred["keypoints0"], pred["keypoints1"], pred["mconf"] = (
pred["keypoints0"][keep],
pred["keypoints1"][keep],
scores,
)
return pred
|