Spaces:
Running
Running
File size: 9,750 Bytes
a80d6bb 84efff1 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# Copyright 2020 Toyota Research Institute. All rights reserved.
# Adapted from: https://github.com/rpautrat/SuperPoint/blob/master/superpoint/evaluations/descriptor_evaluation.py
import random
from glob import glob
from os import path as osp
import cv2
import numpy as np
from ..lanet_utils import warp_keypoints
def select_k_best(points, descriptors, k):
"""Select the k most probable points (and strip their probability).
points has shape (num_points, 3) where the last coordinate is the probability.
Parameters
----------
points: numpy.ndarray (N,3)
Keypoint vector, consisting of (x,y,probability).
descriptors: numpy.ndarray (N,256)
Keypoint descriptors.
k: int
Number of keypoints to select, based on probability.
Returns
-------
selected_points: numpy.ndarray (k,2)
k most probable keypoints.
selected_descriptors: numpy.ndarray (k,256)
Descriptors corresponding to the k most probable keypoints.
"""
sorted_prob = points[points[:, 2].argsort(), :2]
sorted_desc = descriptors[points[:, 2].argsort(), :]
start = min(k, points.shape[0])
selected_points = sorted_prob[-start:, :]
selected_descriptors = sorted_desc[-start:, :]
return selected_points, selected_descriptors
def keep_shared_points(keypoints, descriptors, H, shape, keep_k_points=1000):
"""
Compute a list of keypoints from the map, filter the list of points by keeping
only the points that once mapped by H are still inside the shape of the map
and keep at most 'keep_k_points' keypoints in the image.
Parameters
----------
keypoints: numpy.ndarray (N,3)
Keypoint vector, consisting of (x,y,probability).
descriptors: numpy.ndarray (N,256)
Keypoint descriptors.
H: numpy.ndarray (3,3)
Homography.
shape: tuple
Image shape.
keep_k_points: int
Number of keypoints to select, based on probability.
Returns
-------
selected_points: numpy.ndarray (k,2)
k most probable keypoints.
selected_descriptors: numpy.ndarray (k,256)
Descriptors corresponding to the k most probable keypoints.
"""
def keep_true_keypoints(points, descriptors, H, shape):
"""Keep only the points whose warped coordinates by H are still inside shape."""
warped_points = warp_keypoints(points[:, [1, 0]], H)
warped_points[:, [0, 1]] = warped_points[:, [1, 0]]
mask = (
(warped_points[:, 0] >= 0)
& (warped_points[:, 0] < shape[0])
& (warped_points[:, 1] >= 0)
& (warped_points[:, 1] < shape[1])
)
return points[mask, :], descriptors[mask, :]
selected_keypoints, selected_descriptors = keep_true_keypoints(
keypoints, descriptors, H, shape
)
selected_keypoints, selected_descriptors = select_k_best(
selected_keypoints, selected_descriptors, keep_k_points
)
return selected_keypoints, selected_descriptors
def compute_matching_score(data, keep_k_points=1000):
"""
Compute the matching score between two sets of keypoints with associated descriptors.
Parameters
----------
data: dict
Input dictionary containing:
image_shape: tuple (H,W)
Original image shape.
homography: numpy.ndarray (3,3)
Ground truth homography.
prob: numpy.ndarray (N,3)
Keypoint vector, consisting of (x,y,probability).
warped_prob: numpy.ndarray (N,3)
Warped keypoint vector, consisting of (x,y,probability).
desc: numpy.ndarray (N,256)
Keypoint descriptors.
warped_desc: numpy.ndarray (N,256)
Warped keypoint descriptors.
keep_k_points: int
Number of keypoints to select, based on probability.
Returns
-------
ms: float
Matching score.
"""
shape = data["image_shape"]
real_H = data["homography"]
# Filter out predictions
keypoints = data["prob"][:, :2].T
keypoints = keypoints[::-1]
prob = data["prob"][:, 2]
keypoints = np.stack([keypoints[0], keypoints[1], prob], axis=-1)
warped_keypoints = data["warped_prob"][:, :2].T
warped_keypoints = warped_keypoints[::-1]
warped_prob = data["warped_prob"][:, 2]
warped_keypoints = np.stack(
[warped_keypoints[0], warped_keypoints[1], warped_prob], axis=-1
)
desc = data["desc"]
warped_desc = data["warped_desc"]
# Keeps all points for the next frame. The matching for caculating M.Score shouldnt use only in view points.
keypoints, desc = select_k_best(keypoints, desc, keep_k_points)
warped_keypoints, warped_desc = select_k_best(
warped_keypoints, warped_desc, keep_k_points
)
# Match the keypoints with the warped_keypoints with nearest neighbor search
# This part needs to be done with crossCheck=False.
# All the matched pairs need to be evaluated without any selection.
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=False)
matches = bf.match(desc, warped_desc)
matches_idx = np.array([m.queryIdx for m in matches])
m_keypoints = keypoints[matches_idx, :]
matches_idx = np.array([m.trainIdx for m in matches])
m_warped_keypoints = warped_keypoints[matches_idx, :]
true_warped_keypoints = warp_keypoints(
m_warped_keypoints[:, [1, 0]], np.linalg.inv(real_H)
)[:, ::-1]
vis_warped = np.all(
(true_warped_keypoints >= 0) & (true_warped_keypoints <= (np.array(shape) - 1)),
axis=-1,
)
norm1 = np.linalg.norm(true_warped_keypoints - m_keypoints, axis=-1)
correct1 = norm1 < 3
count1 = np.sum(correct1 * vis_warped)
score1 = count1 / np.maximum(np.sum(vis_warped), 1.0)
matches = bf.match(warped_desc, desc)
matches_idx = np.array([m.queryIdx for m in matches])
m_warped_keypoints = warped_keypoints[matches_idx, :]
matches_idx = np.array([m.trainIdx for m in matches])
m_keypoints = keypoints[matches_idx, :]
true_keypoints = warp_keypoints(m_keypoints[:, [1, 0]], real_H)[:, ::-1]
vis = np.all(
(true_keypoints >= 0) & (true_keypoints <= (np.array(shape) - 1)), axis=-1
)
norm2 = np.linalg.norm(true_keypoints - m_warped_keypoints, axis=-1)
correct2 = norm2 < 3
count2 = np.sum(correct2 * vis)
score2 = count2 / np.maximum(np.sum(vis), 1.0)
ms = (score1 + score2) / 2
return ms
def compute_homography(data, keep_k_points=1000):
"""
Compute the homography between 2 sets of Keypoints and descriptors inside data.
Use the homography to compute the correctness metrics (1,3,5).
Parameters
----------
data: dict
Input dictionary containing:
image_shape: tuple (H,W)
Original image shape.
homography: numpy.ndarray (3,3)
Ground truth homography.
prob: numpy.ndarray (N,3)
Keypoint vector, consisting of (x,y,probability).
warped_prob: numpy.ndarray (N,3)
Warped keypoint vector, consisting of (x,y,probability).
desc: numpy.ndarray (N,256)
Keypoint descriptors.
warped_desc: numpy.ndarray (N,256)
Warped keypoint descriptors.
keep_k_points: int
Number of keypoints to select, based on probability.
Returns
-------
correctness1: float
correctness1 metric.
correctness3: float
correctness3 metric.
correctness5: float
correctness5 metric.
"""
shape = data["image_shape"]
real_H = data["homography"]
# Filter out predictions
keypoints = data["prob"][:, :2].T
keypoints = keypoints[::-1]
prob = data["prob"][:, 2]
keypoints = np.stack([keypoints[0], keypoints[1], prob], axis=-1)
warped_keypoints = data["warped_prob"][:, :2].T
warped_keypoints = warped_keypoints[::-1]
warped_prob = data["warped_prob"][:, 2]
warped_keypoints = np.stack(
[warped_keypoints[0], warped_keypoints[1], warped_prob], axis=-1
)
desc = data["desc"]
warped_desc = data["warped_desc"]
# Keeps only the points shared between the two views
keypoints, desc = keep_shared_points(keypoints, desc, real_H, shape, keep_k_points)
warped_keypoints, warped_desc = keep_shared_points(
warped_keypoints, warped_desc, np.linalg.inv(real_H), shape, keep_k_points
)
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
matches = bf.match(desc, warped_desc)
matches_idx = np.array([m.queryIdx for m in matches])
m_keypoints = keypoints[matches_idx, :]
matches_idx = np.array([m.trainIdx for m in matches])
m_warped_keypoints = warped_keypoints[matches_idx, :]
# Estimate the homography between the matches using RANSAC
H, _ = cv2.findHomography(
m_keypoints[:, [1, 0]],
m_warped_keypoints[:, [1, 0]],
cv2.RANSAC,
3,
maxIters=5000,
)
if H is None:
return 0, 0, 0
shape = shape[::-1]
# Compute correctness
corners = np.array(
[
[0, 0, 1],
[0, shape[1] - 1, 1],
[shape[0] - 1, 0, 1],
[shape[0] - 1, shape[1] - 1, 1],
]
)
real_warped_corners = np.dot(corners, np.transpose(real_H))
real_warped_corners = real_warped_corners[:, :2] / real_warped_corners[:, 2:]
warped_corners = np.dot(corners, np.transpose(H))
warped_corners = warped_corners[:, :2] / warped_corners[:, 2:]
mean_dist = np.mean(np.linalg.norm(real_warped_corners - warped_corners, axis=1))
correctness1 = float(mean_dist <= 1)
correctness3 = float(mean_dist <= 3)
correctness5 = float(mean_dist <= 5)
return correctness1, correctness3, correctness5
|