File size: 13,697 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
c74a070
a80d6bb
c74a070
a80d6bb
c74a070
a80d6bb
 
c74a070
 
 
 
a80d6bb
 
c74a070
 
 
 
a80d6bb
 
c74a070
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
c74a070
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
 
c74a070
 
a80d6bb
 
c74a070
a80d6bb
c74a070
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
 
c74a070
 
 
 
 
 
 
 
a80d6bb
c74a070
 
a80d6bb
 
 
c74a070
 
 
 
 
 
 
a80d6bb
 
 
 
c74a070
a80d6bb
c74a070
 
 
 
 
a80d6bb
 
 
c74a070
 
a80d6bb
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
c74a070
 
 
a80d6bb
 
 
c74a070
 
 
 
 
a80d6bb
c74a070
a80d6bb
c74a070
a80d6bb
c74a070
a80d6bb
 
 
 
 
 
 
c74a070
 
a80d6bb
 
c74a070
a80d6bb
 
c74a070
a80d6bb
 
 
c74a070
a80d6bb
 
 
 
 
c74a070
a80d6bb
 
c74a070
a80d6bb
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
 
 
c74a070
 
 
a80d6bb
 
c74a070
 
 
a80d6bb
 
 
 
 
 
 
c74a070
 
 
 
a80d6bb
 
 
c74a070
 
 
 
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
c74a070
a80d6bb
 
 
 
 
c74a070
 
 
a80d6bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import torch
from torch import nn
from torch.nn.parameter import Parameter
import torchvision.transforms as tvf
import torch.nn.functional as F
import numpy as np


def gather_nd(params, indices):
    orig_shape = list(indices.shape)
    num_samples = np.prod(orig_shape[:-1])
    m = orig_shape[-1]
    n = len(params.shape)

    if m <= n:
        out_shape = orig_shape[:-1] + list(params.shape)[m:]
    else:
        raise ValueError(
            f"the last dimension of indices must less or equal to the rank of params. Got indices:{indices.shape}, params:{params.shape}. {m} > {n}"
        )

    indices = indices.reshape((num_samples, m)).transpose(0, 1).tolist()
    output = params[indices]  # (num_samples, ...)
    return output.reshape(out_shape).contiguous()


# input: pos [kpt_n, 2]; inputs [H, W, 128] / [H, W]
# output: [kpt_n, 128] / [kpt_n]
def interpolate(pos, inputs, nd=True):
    h = inputs.shape[0]
    w = inputs.shape[1]

    i = pos[:, 0]
    j = pos[:, 1]

    i_top_left = torch.clamp(torch.floor(i).int(), 0, h - 1)
    j_top_left = torch.clamp(torch.floor(j).int(), 0, w - 1)

    i_top_right = torch.clamp(torch.floor(i).int(), 0, h - 1)
    j_top_right = torch.clamp(torch.ceil(j).int(), 0, w - 1)

    i_bottom_left = torch.clamp(torch.ceil(i).int(), 0, h - 1)
    j_bottom_left = torch.clamp(torch.floor(j).int(), 0, w - 1)

    i_bottom_right = torch.clamp(torch.ceil(i).int(), 0, h - 1)
    j_bottom_right = torch.clamp(torch.ceil(j).int(), 0, w - 1)

    dist_i_top_left = i - i_top_left.float()
    dist_j_top_left = j - j_top_left.float()
    w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left)
    w_top_right = (1 - dist_i_top_left) * dist_j_top_left
    w_bottom_left = dist_i_top_left * (1 - dist_j_top_left)
    w_bottom_right = dist_i_top_left * dist_j_top_left

    if nd:
        w_top_left = w_top_left[..., None]
        w_top_right = w_top_right[..., None]
        w_bottom_left = w_bottom_left[..., None]
        w_bottom_right = w_bottom_right[..., None]

    interpolated_val = (
        w_top_left * gather_nd(inputs, torch.stack([i_top_left, j_top_left], axis=-1))
        + w_top_right
        * gather_nd(inputs, torch.stack([i_top_right, j_top_right], axis=-1))
        + w_bottom_left
        * gather_nd(inputs, torch.stack([i_bottom_left, j_bottom_left], axis=-1))
        + w_bottom_right
        * gather_nd(inputs, torch.stack([i_bottom_right, j_bottom_right], axis=-1))
    )

    return interpolated_val


def edge_mask(inputs, n_channel, dilation=1, edge_thld=5):
    b, c, h, w = inputs.size()
    device = inputs.device

    dii_filter = torch.tensor([[0, 1.0, 0], [0, -2.0, 0], [0, 1.0, 0]]).view(1, 1, 3, 3)
    dij_filter = 0.25 * torch.tensor(
        [[1.0, 0, -1.0], [0, 0.0, 0], [-1.0, 0, 1.0]]
    ).view(1, 1, 3, 3)
    djj_filter = torch.tensor([[0, 0, 0], [1.0, -2.0, 1.0], [0, 0, 0]]).view(1, 1, 3, 3)

    dii = F.conv2d(
        inputs.view(-1, 1, h, w),
        dii_filter.to(device),
        padding=dilation,
        dilation=dilation,
    ).view(b, c, h, w)
    dij = F.conv2d(
        inputs.view(-1, 1, h, w),
        dij_filter.to(device),
        padding=dilation,
        dilation=dilation,
    ).view(b, c, h, w)
    djj = F.conv2d(
        inputs.view(-1, 1, h, w),
        djj_filter.to(device),
        padding=dilation,
        dilation=dilation,
    ).view(b, c, h, w)

    det = dii * djj - dij * dij
    tr = dii + djj
    del dii, dij, djj

    threshold = (edge_thld + 1) ** 2 / edge_thld
    is_not_edge = torch.min(tr * tr / det <= threshold, det > 0)

    return is_not_edge


# input: score_map [batch_size, 1, H, W]
# output: indices [2, k, 2], scores [2, k]
def extract_kpts(score_map, k=256, score_thld=0, edge_thld=0, nms_size=3, eof_size=5):
    h = score_map.shape[2]
    w = score_map.shape[3]

    mask = score_map > score_thld
    if nms_size > 0:
        nms_mask = F.max_pool2d(
            score_map, kernel_size=nms_size, stride=1, padding=nms_size // 2
        )
        nms_mask = torch.eq(score_map, nms_mask)
        mask = torch.logical_and(nms_mask, mask)
    if eof_size > 0:
        eof_mask = torch.ones(
            (1, 1, h - 2 * eof_size, w - 2 * eof_size),
            dtype=torch.float32,
            device=score_map.device,
        )
        eof_mask = F.pad(eof_mask, [eof_size] * 4, value=0)
        eof_mask = eof_mask.bool()
        mask = torch.logical_and(eof_mask, mask)
    if edge_thld > 0:
        non_edge_mask = edge_mask(score_map, 1, dilation=3, edge_thld=edge_thld)
        mask = torch.logical_and(non_edge_mask, mask)

    bs = score_map.shape[0]
    if bs is None:
        indices = torch.nonzero(mask)[0]
        scores = gather_nd(score_map, indices)[0]
        sample = torch.sort(scores, descending=True)[1][0:k]
        indices = indices[sample].unsqueeze(0)
        scores = scores[sample].unsqueeze(0)
    else:
        indices = []
        scores = []
        for i in range(bs):
            tmp_mask = mask[i][0]
            tmp_score_map = score_map[i][0]
            tmp_indices = torch.nonzero(tmp_mask)
            tmp_scores = gather_nd(tmp_score_map, tmp_indices)
            tmp_sample = torch.sort(tmp_scores, descending=True)[1][0:k]
            tmp_indices = tmp_indices[tmp_sample]
            tmp_scores = tmp_scores[tmp_sample]
            indices.append(tmp_indices)
            scores.append(tmp_scores)
        try:
            indices = torch.stack(indices, dim=0)
            scores = torch.stack(scores, dim=0)
        except:
            min_num = np.min([len(i) for i in indices])
            indices = torch.stack([i[:min_num] for i in indices], dim=0)
            scores = torch.stack([i[:min_num] for i in scores], dim=0)
    return indices, scores


# input: [batch_size, C, H, W]
# output: [batch_size, C, H, W], [batch_size, C, H, W]
def peakiness_score(inputs, moving_instance_max, ksize=3, dilation=1):
    inputs = inputs / moving_instance_max

    batch_size, C, H, W = inputs.shape

    pad_size = ksize // 2 + (dilation - 1)
    kernel = torch.ones([C, 1, ksize, ksize], device=inputs.device) / (ksize * ksize)

    pad_inputs = F.pad(inputs, [pad_size] * 4, mode="reflect")

    avg_spatial_inputs = F.conv2d(
        pad_inputs, kernel, stride=1, dilation=dilation, padding=0, groups=C
    )
    avg_channel_inputs = torch.mean(
        inputs, axis=1, keepdim=True
    )  # channel dimension is 1
    # print(avg_spatial_inputs.shape)

    alpha = F.softplus(inputs - avg_spatial_inputs)
    beta = F.softplus(inputs - avg_channel_inputs)

    return alpha, beta


class DarkFeat(nn.Module):
    default_config = {
        "model_path": "",
        "input_type": "raw-demosaic",
        "kpt_n": 5000,
        "kpt_refinement": True,
        "score_thld": 0.5,
        "edge_thld": 10,
        "multi_scale": False,
        "multi_level": True,
        "nms_size": 3,
        "eof_size": 5,
        "need_norm": True,
        "use_peakiness": True,
    }

    def __init__(
        self,
        model_path="",
        inchan=3,
        dilated=True,
        dilation=1,
        bn=True,
        bn_affine=False,
    ):
        super(DarkFeat, self).__init__()
        inchan = (
            3
            if self.default_config["input_type"] == "rgb"
            or self.default_config["input_type"] == "raw-demosaic"
            else 1
        )
        self.config = {**self.default_config}

        self.inchan = inchan
        self.curchan = inchan
        self.dilated = dilated
        self.dilation = dilation
        self.bn = bn
        self.bn_affine = bn_affine
        self.config["model_path"] = model_path

        dim = 128
        mchan = 4

        self.conv0 = self._add_conv(8 * mchan)
        self.conv1 = self._add_conv(8 * mchan, bn=False)
        self.bn1 = self._make_bn(8 * mchan)
        self.conv2 = self._add_conv(16 * mchan, stride=2)
        self.conv3 = self._add_conv(16 * mchan, bn=False)
        self.bn3 = self._make_bn(16 * mchan)
        self.conv4 = self._add_conv(32 * mchan, stride=2)
        self.conv5 = self._add_conv(32 * mchan)
        # replace last 8x8 convolution with 3 3x3 convolutions
        self.conv6_0 = self._add_conv(32 * mchan)
        self.conv6_1 = self._add_conv(32 * mchan)
        self.conv6_2 = self._add_conv(dim, bn=False, relu=False)
        self.out_dim = dim

        self.moving_avg_params = nn.ParameterList(
            [
                Parameter(torch.tensor(1.0), requires_grad=False),
                Parameter(torch.tensor(1.0), requires_grad=False),
                Parameter(torch.tensor(1.0), requires_grad=False),
            ]
        )
        self.clf = nn.Conv2d(128, 2, kernel_size=1)

        state_dict = torch.load(self.config["model_path"])
        new_state_dict = {}

        for key in state_dict:
            if (
                "running_mean" not in key
                and "running_var" not in key
                and "num_batches_tracked" not in key
            ):
                new_state_dict[key] = state_dict[key]

        self.load_state_dict(new_state_dict)
        print("Loaded DarkFeat model")

    def _make_bn(self, outd):
        return nn.BatchNorm2d(outd, affine=self.bn_affine, track_running_stats=False)

    def _add_conv(
        self,
        outd,
        k=3,
        stride=1,
        dilation=1,
        bn=True,
        relu=True,
        k_pool=1,
        pool_type="max",
        bias=False,
    ):
        d = self.dilation * dilation
        conv_params = dict(
            padding=((k - 1) * d) // 2, dilation=d, stride=stride, bias=bias
        )

        ops = nn.ModuleList([])

        ops.append(nn.Conv2d(self.curchan, outd, kernel_size=k, **conv_params))
        if bn and self.bn:
            ops.append(self._make_bn(outd))
        if relu:
            ops.append(nn.ReLU(inplace=True))
        self.curchan = outd

        if k_pool > 1:
            if pool_type == "avg":
                ops.append(torch.nn.AvgPool2d(kernel_size=k_pool))
            elif pool_type == "max":
                ops.append(torch.nn.MaxPool2d(kernel_size=k_pool))
            else:
                print(f"Error, unknown pooling type {pool_type}...")

        return nn.Sequential(*ops)

    def forward(self, input):
        """Compute keypoints, scores, descriptors for image"""
        data = input["image"]
        H, W = data.shape[2:]

        if self.config["input_type"] == "rgb":
            # 3-channel rgb
            RGB_mean = [0.485, 0.456, 0.406]
            RGB_std = [0.229, 0.224, 0.225]
            norm_RGB = tvf.Normalize(mean=RGB_mean, std=RGB_std)
            data = norm_RGB(data)

        elif self.config["input_type"] == "gray":
            # 1-channel
            data = torch.mean(data, dim=1, keepdim=True)
            norm_gray0 = tvf.Normalize(mean=data.mean(), std=data.std())
            data = norm_gray0(data)

        elif self.config["input_type"] == "raw":
            # 4-channel
            pass
        elif self.config["input_type"] == "raw-demosaic":
            # 3-channel
            pass
        else:
            raise NotImplementedError()

        # x: [N, C, H, W]
        x0 = self.conv0(data)
        x1 = self.conv1(x0)
        x1_bn = self.bn1(x1)
        x2 = self.conv2(x1_bn)
        x3 = self.conv3(x2)
        x3_bn = self.bn3(x3)
        x4 = self.conv4(x3_bn)
        x5 = self.conv5(x4)
        x6_0 = self.conv6_0(x5)
        x6_1 = self.conv6_1(x6_0)
        x6_2 = self.conv6_2(x6_1)

        comb_weights = torch.tensor([1.0, 2.0, 3.0], device=data.device)
        comb_weights /= torch.sum(comb_weights)
        ksize = [3, 2, 1]
        det_score_maps = []

        for idx, xx in enumerate([x1, x3, x6_2]):
            alpha, beta = peakiness_score(
                xx, self.moving_avg_params[idx].detach(), ksize=3, dilation=ksize[idx]
            )
            score_vol = alpha * beta
            det_score_map = torch.max(score_vol, dim=1, keepdim=True)[0]
            det_score_map = F.interpolate(
                det_score_map, size=data.shape[2:], mode="bilinear", align_corners=True
            )
            det_score_map = comb_weights[idx] * det_score_map
            det_score_maps.append(det_score_map)

        det_score_map = torch.sum(torch.stack(det_score_maps, dim=0), dim=0)

        desc = x6_2
        score_map = det_score_map
        conf = F.softmax(self.clf((desc) ** 2), dim=1)[:, 1:2]
        score_map = score_map * F.interpolate(
            conf, size=score_map.shape[2:], mode="bilinear", align_corners=True
        )

        kpt_inds, kpt_score = extract_kpts(
            score_map,
            k=self.config["kpt_n"],
            score_thld=self.config["score_thld"],
            nms_size=self.config["nms_size"],
            eof_size=self.config["eof_size"],
            edge_thld=self.config["edge_thld"],
        )

        descs = (
            F.normalize(
                interpolate(kpt_inds.squeeze(0) / 4, desc.squeeze(0).permute(1, 2, 0)),
                p=2,
                dim=-1,
            )
            .detach()
            .cpu()
            .numpy(),
        )
        kpts = np.squeeze(
            torch.stack([kpt_inds[:, :, 1], kpt_inds[:, :, 0]], dim=-1).cpu(), axis=0
        ) * np.array([W / data.shape[3], H / data.shape[2]], dtype=np.float32)
        scores = np.squeeze(kpt_score.detach().cpu().numpy(), axis=0)

        idxs = np.negative(scores).argsort()[0 : self.config["kpt_n"]]
        descs = descs[0][idxs]
        kpts = kpts[idxs]
        scores = scores[idxs]

        return {
            "keypoints": kpts,
            "scores": torch.from_numpy(scores),
            "descriptors": torch.from_numpy(descs.T),
        }