Spaces:
Running
Running
File size: 14,345 Bytes
4d4dd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
# --------------------------------------------------------
# DPT head for ViTs
# --------------------------------------------------------
# References:
# https://github.com/isl-org/DPT
# https://github.com/EPFL-VILAB/MultiMAE/blob/main/multimae/output_adapters.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from typing import Union, Tuple, Iterable, List, Optional, Dict
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
out_shape4 = out_shape
if expand == True:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(
in_shape[0],
out_shape1,
kernel_size=3,
stride=1,
padding=1,
bias=False,
groups=groups,
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1],
out_shape2,
kernel_size=3,
stride=1,
padding=1,
bias=False,
groups=groups,
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2],
out_shape3,
kernel_size=3,
stride=1,
padding=1,
bias=False,
groups=groups,
)
scratch.layer4_rn = nn.Conv2d(
in_shape[3],
out_shape4,
kernel_size=3,
stride=1,
padding=1,
bias=False,
groups=groups,
)
scratch.layer_rn = nn.ModuleList([
scratch.layer1_rn,
scratch.layer2_rn,
scratch.layer3_rn,
scratch.layer4_rn,
])
return scratch
class ResidualConvUnit_custom(nn.Module):
"""Residual convolution module."""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups = 1
self.conv1 = nn.Conv2d(
features,
features,
kernel_size=3,
stride=1,
padding=1,
bias=not self.bn,
groups=self.groups,
)
self.conv2 = nn.Conv2d(
features,
features,
kernel_size=3,
stride=1,
padding=1,
bias=not self.bn,
groups=self.groups,
)
if self.bn == True:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn == True:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn == True:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock_custom(nn.Module):
"""Feature fusion block."""
def __init__(
self,
features,
activation,
deconv=False,
bn=False,
expand=False,
align_corners=True,
width_ratio=1,
):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock_custom, self).__init__()
self.width_ratio = width_ratio
self.deconv = deconv
self.align_corners = align_corners
self.groups = 1
self.expand = expand
out_features = features
if self.expand == True:
out_features = features // 2
self.out_conv = nn.Conv2d(
features,
out_features,
kernel_size=1,
stride=1,
padding=0,
bias=True,
groups=1,
)
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, *xs):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
if self.width_ratio != 1:
res = F.interpolate(res, size=(output.shape[2], output.shape[3]), mode='bilinear')
output = self.skip_add.add(output, res)
# output += res
output = self.resConfUnit2(output)
if self.width_ratio != 1:
# and output.shape[3] < self.width_ratio * output.shape[2]
#size=(image.shape[])
if (output.shape[3] / output.shape[2]) < (2 / 3) * self.width_ratio:
shape = 3 * output.shape[3]
else:
shape = int(self.width_ratio * 2 * output.shape[2])
output = F.interpolate(output, size=(2* output.shape[2], shape), mode='bilinear')
else:
output = nn.functional.interpolate(output, scale_factor=2,
mode="bilinear", align_corners=self.align_corners)
output = self.out_conv(output)
return output
def make_fusion_block(features, use_bn, width_ratio=1):
return FeatureFusionBlock_custom(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
width_ratio=width_ratio,
)
class Interpolate(nn.Module):
"""Interpolation module."""
def __init__(self, scale_factor, mode, align_corners=False):
"""Init.
Args:
scale_factor (float): scaling
mode (str): interpolation mode
"""
super(Interpolate, self).__init__()
self.interp = nn.functional.interpolate
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: interpolated data
"""
x = self.interp(
x,
scale_factor=self.scale_factor,
mode=self.mode,
align_corners=self.align_corners,
)
return x
class DPTOutputAdapter(nn.Module):
"""DPT output adapter.
:param num_cahnnels: Number of output channels
:param stride_level: tride level compared to the full-sized image.
E.g. 4 for 1/4th the size of the image.
:param patch_size_full: Int or tuple of the patch size over the full image size.
Patch size for smaller inputs will be computed accordingly.
:param hooks: Index of intermediate layers
:param layer_dims: Dimension of intermediate layers
:param feature_dim: Feature dimension
:param last_dim: out_channels/in_channels for the last two Conv2d when head_type == regression
:param use_bn: If set to True, activates batch norm
:param dim_tokens_enc: Dimension of tokens coming from encoder
"""
def __init__(self,
num_channels: int = 1,
stride_level: int = 1,
patch_size: Union[int, Tuple[int, int]] = 16,
main_tasks: Iterable[str] = ('rgb',),
hooks: List[int] = [2, 5, 8, 11],
layer_dims: List[int] = [96, 192, 384, 768],
feature_dim: int = 256,
last_dim: int = 32,
use_bn: bool = False,
dim_tokens_enc: Optional[int] = None,
head_type: str = 'regression',
output_width_ratio=1,
**kwargs):
super().__init__()
self.num_channels = num_channels
self.stride_level = stride_level
self.patch_size = pair(patch_size)
self.main_tasks = main_tasks
self.hooks = hooks
self.layer_dims = layer_dims
self.feature_dim = feature_dim
self.dim_tokens_enc = dim_tokens_enc * len(self.main_tasks) if dim_tokens_enc is not None else None
self.head_type = head_type
# Actual patch height and width, taking into account stride of input
self.P_H = max(1, self.patch_size[0] // stride_level)
self.P_W = max(1, self.patch_size[1] // stride_level)
self.scratch = make_scratch(layer_dims, feature_dim, groups=1, expand=False)
self.scratch.refinenet1 = make_fusion_block(feature_dim, use_bn, output_width_ratio)
self.scratch.refinenet2 = make_fusion_block(feature_dim, use_bn, output_width_ratio)
self.scratch.refinenet3 = make_fusion_block(feature_dim, use_bn, output_width_ratio)
self.scratch.refinenet4 = make_fusion_block(feature_dim, use_bn, output_width_ratio)
if self.head_type == 'regression':
# The "DPTDepthModel" head
self.head = nn.Sequential(
nn.Conv2d(feature_dim, feature_dim // 2, kernel_size=3, stride=1, padding=1),
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(feature_dim // 2, last_dim, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(last_dim, self.num_channels, kernel_size=1, stride=1, padding=0)
)
elif self.head_type == 'semseg':
# The "DPTSegmentationModel" head
self.head = nn.Sequential(
nn.Conv2d(feature_dim, feature_dim, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(feature_dim) if use_bn else nn.Identity(),
nn.ReLU(True),
nn.Dropout(0.1, False),
nn.Conv2d(feature_dim, self.num_channels, kernel_size=1),
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
)
else:
raise ValueError('DPT head_type must be "regression" or "semseg".')
if self.dim_tokens_enc is not None:
self.init(dim_tokens_enc=dim_tokens_enc)
def init(self, dim_tokens_enc=768):
"""
Initialize parts of decoder that are dependent on dimension of encoder tokens.
Should be called when setting up MultiMAE.
:param dim_tokens_enc: Dimension of tokens coming from encoder
"""
#print(dim_tokens_enc)
# Set up activation postprocessing layers
if isinstance(dim_tokens_enc, int):
dim_tokens_enc = 4 * [dim_tokens_enc]
self.dim_tokens_enc = [dt * len(self.main_tasks) for dt in dim_tokens_enc]
self.act_1_postprocess = nn.Sequential(
nn.Conv2d(
in_channels=self.dim_tokens_enc[0],
out_channels=self.layer_dims[0],
kernel_size=1, stride=1, padding=0,
),
nn.ConvTranspose2d(
in_channels=self.layer_dims[0],
out_channels=self.layer_dims[0],
kernel_size=4, stride=4, padding=0,
bias=True, dilation=1, groups=1,
)
)
self.act_2_postprocess = nn.Sequential(
nn.Conv2d(
in_channels=self.dim_tokens_enc[1],
out_channels=self.layer_dims[1],
kernel_size=1, stride=1, padding=0,
),
nn.ConvTranspose2d(
in_channels=self.layer_dims[1],
out_channels=self.layer_dims[1],
kernel_size=2, stride=2, padding=0,
bias=True, dilation=1, groups=1,
)
)
self.act_3_postprocess = nn.Sequential(
nn.Conv2d(
in_channels=self.dim_tokens_enc[2],
out_channels=self.layer_dims[2],
kernel_size=1, stride=1, padding=0,
)
)
self.act_4_postprocess = nn.Sequential(
nn.Conv2d(
in_channels=self.dim_tokens_enc[3],
out_channels=self.layer_dims[3],
kernel_size=1, stride=1, padding=0,
),
nn.Conv2d(
in_channels=self.layer_dims[3],
out_channels=self.layer_dims[3],
kernel_size=3, stride=2, padding=1,
)
)
self.act_postprocess = nn.ModuleList([
self.act_1_postprocess,
self.act_2_postprocess,
self.act_3_postprocess,
self.act_4_postprocess
])
def adapt_tokens(self, encoder_tokens):
# Adapt tokens
x = []
x.append(encoder_tokens[:, :])
x = torch.cat(x, dim=-1)
return x
def forward(self, encoder_tokens: List[torch.Tensor], image_size):
#input_info: Dict):
assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first'
H, W = image_size
# Number of patches in height and width
N_H = H // (self.stride_level * self.P_H)
N_W = W // (self.stride_level * self.P_W)
# Hook decoder onto 4 layers from specified ViT layers
layers = [encoder_tokens[hook] for hook in self.hooks]
# Extract only task-relevant tokens and ignore global tokens.
layers = [self.adapt_tokens(l) for l in layers]
# Reshape tokens to spatial representation
layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers]
layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)]
# Project layers to chosen feature dim
layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)]
# Fuse layers using refinement stages
path_4 = self.scratch.refinenet4(layers[3])
path_3 = self.scratch.refinenet3(path_4, layers[2])
path_2 = self.scratch.refinenet2(path_3, layers[1])
path_1 = self.scratch.refinenet1(path_2, layers[0])
# Output head
out = self.head(path_1)
return out
|