File size: 2,088 Bytes
f90241e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# mast3r gradio demo executable
# --------------------------------------------------------
import os
import torch
import tempfile

import mast3r.utils.path_to_dust3r  # noqa
from dust3r.model import AsymmetricCroCo3DStereo
from mast3r.model import AsymmetricMASt3R
from dust3r.demo import get_args_parser as dust3r_get_args_parser
from dust3r.demo import main_demo

import matplotlib.pyplot as pl
pl.ion()

torch.backends.cuda.matmul.allow_tf32 = True  # for gpu >= Ampere and pytorch >= 1.12


def get_args_parser():
    parser = dust3r_get_args_parser()

    actions = parser._actions
    for action in actions:
        if action.dest == 'model_name':
            action.choices.append('MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric')
    # change defaults
    parser.prog = 'mast3r demo'
    return parser


if __name__ == '__main__':
    parser = get_args_parser()
    args = parser.parse_args()

    if args.tmp_dir is not None:
        tmp_path = args.tmp_dir
        os.makedirs(tmp_path, exist_ok=True)
        tempfile.tempdir = tmp_path

    if args.server_name is not None:
        server_name = args.server_name
    else:
        server_name = '0.0.0.0' if args.local_network else '127.0.0.1'

    if args.weights is not None:
        weights_path = args.weights
    else:
        weights_path = "naver/" + args.model_name

    try:
        model = AsymmetricMASt3R.from_pretrained(weights_path).to(args.device)
    except Exception as e:
        model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(args.device)

    # dust3r will write the 3D model inside tmpdirname
    with tempfile.TemporaryDirectory(suffix='dust3r_gradio_demo') as tmpdirname:
        if not args.silent:
            print('Outputing stuff in', tmpdirname)
        main_demo(tmpdirname, model, args.device, args.image_size, server_name, args.server_port, silent=args.silent)