image-matching-webui / hloc /extract_features.py
Vincentqyw
update: ci
8320ccc
raw
history blame
18.1 kB
import argparse
import collections.abc as collections
import pprint
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, List, Optional, Union
import cv2
import h5py
import numpy as np
import PIL.Image
import torch
import torchvision.transforms.functional as F
from tqdm import tqdm
from . import extractors, logger
from .utils.base_model import dynamic_load
from .utils.io import list_h5_names, read_image
from .utils.parsers import parse_image_lists
"""
A set of standard configurations that can be directly selected from the command
line using their name. Each is a dictionary with the following entries:
- output: the name of the feature file that will be generated.
- model: the model configuration, as passed to a feature extractor.
- preprocessing: how to preprocess the images read from disk.
"""
confs = {
"superpoint_aachen": {
"output": "feats-superpoint-n4096-r1024",
"model": {
"name": "superpoint",
"nms_radius": 3,
"max_keypoints": 4096,
"keypoint_threshold": 0.005,
},
"preprocessing": {
"grayscale": True,
"force_resize": True,
"resize_max": 1600,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
# Resize images to 1600px even if they are originally smaller.
# Improves the keypoint localization if the images are of good quality.
"superpoint_max": {
"output": "feats-superpoint-n4096-rmax1600",
"model": {
"name": "superpoint",
"nms_radius": 3,
"max_keypoints": 4096,
"keypoint_threshold": 0.005,
},
"preprocessing": {
"grayscale": True,
"force_resize": True,
"resize_max": 1600,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"superpoint_inloc": {
"output": "feats-superpoint-n4096-r1600",
"model": {
"name": "superpoint",
"nms_radius": 4,
"max_keypoints": 4096,
"keypoint_threshold": 0.005,
},
"preprocessing": {
"grayscale": True,
"resize_max": 1600,
},
},
"r2d2": {
"output": "feats-r2d2-n5000-r1024",
"model": {
"name": "r2d2",
"max_keypoints": 5000,
"reliability_threshold": 0.7,
"repetability_threshold": 0.7,
},
"preprocessing": {
"grayscale": False,
"force_resize": True,
"resize_max": 1024,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"d2net-ss": {
"output": "feats-d2net-ss-n5000-r1600",
"model": {
"name": "d2net",
"multiscale": False,
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": False,
"resize_max": 1600,
},
},
"d2net-ms": {
"output": "feats-d2net-ms-n5000-r1600",
"model": {
"name": "d2net",
"multiscale": True,
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": False,
"resize_max": 1600,
},
},
"rord": {
"output": "feats-rord-ss-n5000-r1600",
"model": {
"name": "rord",
"multiscale": False,
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": False,
"resize_max": 1600,
},
},
"rootsift": {
"output": "feats-rootsift-n5000-r1600",
"model": {
"name": "dog",
"descriptor": "rootsift",
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": True,
"force_resize": True,
"resize_max": 1600,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"sift": {
"output": "feats-sift-n5000-r1600",
"model": {
"name": "sift",
"rootsift": True,
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": True,
"force_resize": True,
"resize_max": 1600,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"sosnet": {
"output": "feats-sosnet-n5000-r1600",
"model": {
"name": "dog",
"descriptor": "sosnet",
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": True,
"resize_max": 1600,
"force_resize": True,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"hardnet": {
"output": "feats-hardnet-n5000-r1600",
"model": {
"name": "dog",
"descriptor": "hardnet",
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": True,
"resize_max": 1600,
"force_resize": True,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"disk": {
"output": "feats-disk-n5000-r1600",
"model": {
"name": "disk",
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": False,
"resize_max": 1600,
},
},
"xfeat": {
"output": "feats-xfeat-n5000-r1600",
"model": {
"name": "xfeat",
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": False,
"resize_max": 1600,
},
},
"alike": {
"output": "feats-alike-n5000-r1600",
"model": {
"name": "alike",
"max_keypoints": 5000,
"use_relu": True,
"multiscale": False,
"detection_threshold": 0.5,
"top_k": -1,
"sub_pixel": False,
},
"preprocessing": {
"grayscale": False,
"resize_max": 1600,
},
},
"lanet": {
"output": "feats-lanet-n5000-r1600",
"model": {
"name": "lanet",
"keypoint_threshold": 0.1,
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": False,
"resize_max": 1600,
},
},
"darkfeat": {
"output": "feats-darkfeat-n5000-r1600",
"model": {
"name": "darkfeat",
"max_keypoints": 5000,
"reliability_threshold": 0.7,
"repetability_threshold": 0.7,
},
"preprocessing": {
"grayscale": False,
"force_resize": True,
"resize_max": 1600,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"dedode": {
"output": "feats-dedode-n5000-r1600",
"model": {
"name": "dedode",
"max_keypoints": 5000,
},
"preprocessing": {
"grayscale": False,
"force_resize": True,
"resize_max": 1600,
"width": 768,
"height": 768,
"dfactor": 8,
},
},
"example": {
"output": "feats-example-n2000-r1024",
"model": {
"name": "example",
"keypoint_threshold": 0.1,
"max_keypoints": 2000,
"model_name": "model.pth",
},
"preprocessing": {
"grayscale": False,
"force_resize": True,
"resize_max": 1024,
"width": 768,
"height": 768,
"dfactor": 8,
},
},
"sfd2": {
"output": "feats-sfd2-n4096-r1600",
"model": {
"name": "sfd2",
"max_keypoints": 4096,
},
"preprocessing": {
"grayscale": False,
"force_resize": True,
"resize_max": 1600,
"width": 640,
"height": 480,
"conf_th": 0.001,
"multiscale": False,
"scales": [1.0],
},
},
# Global descriptors
"dir": {
"output": "global-feats-dir",
"model": {"name": "dir"},
"preprocessing": {"resize_max": 1024},
},
"netvlad": {
"output": "global-feats-netvlad",
"model": {"name": "netvlad"},
"preprocessing": {"resize_max": 1024},
},
"openibl": {
"output": "global-feats-openibl",
"model": {"name": "openibl"},
"preprocessing": {"resize_max": 1024},
},
"cosplace": {
"output": "global-feats-cosplace",
"model": {"name": "cosplace"},
"preprocessing": {"resize_max": 1024},
},
}
def resize_image(image, size, interp):
if interp.startswith("cv2_"):
interp = getattr(cv2, "INTER_" + interp[len("cv2_") :].upper())
h, w = image.shape[:2]
if interp == cv2.INTER_AREA and (w < size[0] or h < size[1]):
interp = cv2.INTER_LINEAR
resized = cv2.resize(image, size, interpolation=interp)
elif interp.startswith("pil_"):
interp = getattr(PIL.Image, interp[len("pil_") :].upper())
resized = PIL.Image.fromarray(image.astype(np.uint8))
resized = resized.resize(size, resample=interp)
resized = np.asarray(resized, dtype=image.dtype)
else:
raise ValueError(f"Unknown interpolation {interp}.")
return resized
class ImageDataset(torch.utils.data.Dataset):
default_conf = {
"globs": ["*.jpg", "*.png", "*.jpeg", "*.JPG", "*.PNG"],
"grayscale": False,
"resize_max": None,
"force_resize": False,
"interpolation": "cv2_area", # pil_linear is more accurate but slower
}
def __init__(self, root, conf, paths=None):
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
self.root = root
if paths is None:
paths = []
for g in conf.globs:
paths += list(Path(root).glob("**/" + g))
if len(paths) == 0:
raise ValueError(f"Could not find any image in root: {root}.")
paths = sorted(list(set(paths)))
self.names = [i.relative_to(root).as_posix() for i in paths]
logger.info(f"Found {len(self.names)} images in root {root}.")
else:
if isinstance(paths, (Path, str)):
self.names = parse_image_lists(paths)
elif isinstance(paths, collections.Iterable):
self.names = [
p.as_posix() if isinstance(p, Path) else p for p in paths
]
else:
raise ValueError(f"Unknown format for path argument {paths}.")
for name in self.names:
if not (root / name).exists():
raise ValueError(
f"Image {name} does not exists in root: {root}."
)
def __getitem__(self, idx):
name = self.names[idx]
image = read_image(self.root / name, self.conf.grayscale)
image = image.astype(np.float32)
size = image.shape[:2][::-1]
if self.conf.resize_max and (
self.conf.force_resize or max(size) > self.conf.resize_max
):
scale = self.conf.resize_max / max(size)
size_new = tuple(int(round(x * scale)) for x in size)
image = resize_image(image, size_new, self.conf.interpolation)
if self.conf.grayscale:
image = image[None]
else:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
image = image / 255.0
data = {
"image": image,
"original_size": np.array(size),
}
return data
def __len__(self):
return len(self.names)
def extract(model, image_0, conf):
default_conf = {
"grayscale": True,
"resize_max": 1024,
"dfactor": 8,
"cache_images": False,
"force_resize": False,
"width": 320,
"height": 240,
"interpolation": "cv2_area",
}
conf = SimpleNamespace(**{**default_conf, **conf})
device = "cuda" if torch.cuda.is_available() else "cpu"
def preprocess(image: np.ndarray, conf: SimpleNamespace):
image = image.astype(np.float32, copy=False)
size = image.shape[:2][::-1]
scale = np.array([1.0, 1.0])
if conf.resize_max:
scale = conf.resize_max / max(size)
if scale < 1.0:
size_new = tuple(int(round(x * scale)) for x in size)
image = resize_image(image, size_new, "cv2_area")
scale = np.array(size) / np.array(size_new)
if conf.force_resize:
image = resize_image(image, (conf.width, conf.height), "cv2_area")
size_new = (conf.width, conf.height)
scale = np.array(size) / np.array(size_new)
if conf.grayscale:
assert image.ndim == 2, image.shape
image = image[None]
else:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
image = torch.from_numpy(image / 255.0).float()
# assure that the size is divisible by dfactor
size_new = tuple(
map(
lambda x: int(x // conf.dfactor * conf.dfactor),
image.shape[-2:],
)
)
image = F.resize(image, size=size_new, antialias=True)
input_ = image.to(device, non_blocking=True)[None]
data = {
"image": input_,
"image_orig": image_0,
"original_size": np.array(size),
"size": np.array(image.shape[1:][::-1]),
}
return data
# convert to grayscale if needed
if len(image_0.shape) == 3 and conf.grayscale:
image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY)
else:
image0 = image_0
# comment following lines, image is always RGB mode
# if not conf.grayscale and len(image_0.shape) == 3:
# image0 = image_0[:, :, ::-1] # BGR to RGB
data = preprocess(image0, conf)
pred = model({"image": data["image"]})
pred["image_size"] = data["original_size"]
pred = {**pred, **data}
return pred
@torch.no_grad()
def main(
conf: Dict,
image_dir: Path,
export_dir: Optional[Path] = None,
as_half: bool = True,
image_list: Optional[Union[Path, List[str]]] = None,
feature_path: Optional[Path] = None,
overwrite: bool = False,
) -> Path:
logger.info(
"Extracting local features with configuration:"
f"\n{pprint.pformat(conf)}"
)
dataset = ImageDataset(image_dir, conf["preprocessing"], image_list)
if feature_path is None:
feature_path = Path(export_dir, conf["output"] + ".h5")
feature_path.parent.mkdir(exist_ok=True, parents=True)
skip_names = set(
list_h5_names(feature_path)
if feature_path.exists() and not overwrite
else ()
)
dataset.names = [n for n in dataset.names if n not in skip_names]
if len(dataset.names) == 0:
logger.info("Skipping the extraction.")
return feature_path
device = "cuda" if torch.cuda.is_available() else "cpu"
Model = dynamic_load(extractors, conf["model"]["name"])
model = Model(conf["model"]).eval().to(device)
loader = torch.utils.data.DataLoader(
dataset, num_workers=1, shuffle=False, pin_memory=True
)
for idx, data in enumerate(tqdm(loader)):
name = dataset.names[idx]
pred = model({"image": data["image"].to(device, non_blocking=True)})
pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
pred["image_size"] = original_size = data["original_size"][0].numpy()
if "keypoints" in pred:
size = np.array(data["image"].shape[-2:][::-1])
scales = (original_size / size).astype(np.float32)
pred["keypoints"] = (pred["keypoints"] + 0.5) * scales[None] - 0.5
if "scales" in pred:
pred["scales"] *= scales.mean()
# add keypoint uncertainties scaled to the original resolution
uncertainty = getattr(model, "detection_noise", 1) * scales.mean()
if as_half:
for k in pred:
dt = pred[k].dtype
if (dt == np.float32) and (dt != np.float16):
pred[k] = pred[k].astype(np.float16)
with h5py.File(str(feature_path), "a", libver="latest") as fd:
try:
if name in fd:
del fd[name]
grp = fd.create_group(name)
for k, v in pred.items():
grp.create_dataset(k, data=v)
if "keypoints" in pred:
grp["keypoints"].attrs["uncertainty"] = uncertainty
except OSError as error:
if "No space left on device" in error.args[0]:
logger.error(
"Out of disk space: storing features on disk can take "
"significant space, did you enable the as_half flag?"
)
del grp, fd[name]
raise error
del pred
logger.info("Finished exporting features.")
return feature_path
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image_dir", type=Path, required=True)
parser.add_argument("--export_dir", type=Path, required=True)
parser.add_argument(
"--conf",
type=str,
default="superpoint_aachen",
choices=list(confs.keys()),
)
parser.add_argument("--as_half", action="store_true")
parser.add_argument("--image_list", type=Path)
parser.add_argument("--feature_path", type=Path)
args = parser.parse_args()
main(confs[args.conf], args.image_dir, args.export_dir, args.as_half)