Spaces:
Running
Running
import matplotlib | |
import matplotlib.pyplot as plt | |
import os | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from lib.utils import ( | |
grid_positions, | |
upscale_positions, | |
downscale_positions, | |
savefig, | |
imshow_image | |
) | |
from lib.exceptions import NoGradientError, EmptyTensorError | |
matplotlib.use('Agg') | |
def loss_function( | |
model, batch, device, margin=1, safe_radius=4, scaling_steps=3, plot=False, plot_path=None | |
): | |
output = model({ | |
'image1': batch['image1'].to(device), | |
'image2': batch['image2'].to(device) | |
}) | |
loss = torch.tensor(np.array([0], dtype=np.float32), device=device) | |
has_grad = False | |
n_valid_samples = 0 | |
for idx_in_batch in range(batch['image1'].size(0)): | |
# Annotations | |
depth1 = batch['depth1'][idx_in_batch].to(device) # [h1, w1] | |
intrinsics1 = batch['intrinsics1'][idx_in_batch].to(device) # [3, 3] | |
pose1 = batch['pose1'][idx_in_batch].view(4, 4).to(device) # [4, 4] | |
bbox1 = batch['bbox1'][idx_in_batch].to(device) # [2] | |
depth2 = batch['depth2'][idx_in_batch].to(device) | |
intrinsics2 = batch['intrinsics2'][idx_in_batch].to(device) | |
pose2 = batch['pose2'][idx_in_batch].view(4, 4).to(device) | |
bbox2 = batch['bbox2'][idx_in_batch].to(device) | |
# Network output | |
dense_features1 = output['dense_features1'][idx_in_batch] | |
c, h1, w1 = dense_features1.size() | |
scores1 = output['scores1'][idx_in_batch].view(-1) | |
dense_features2 = output['dense_features2'][idx_in_batch] | |
_, h2, w2 = dense_features2.size() | |
scores2 = output['scores2'][idx_in_batch] | |
all_descriptors1 = F.normalize(dense_features1.view(c, -1), dim=0) | |
descriptors1 = all_descriptors1 | |
all_descriptors2 = F.normalize(dense_features2.view(c, -1), dim=0) | |
# Warp the positions from image 1 to image 2 | |
fmap_pos1 = grid_positions(h1, w1, device) | |
pos1 = upscale_positions(fmap_pos1, scaling_steps=scaling_steps) | |
try: | |
pos1, pos2, ids = warp( | |
pos1, | |
depth1, intrinsics1, pose1, bbox1, | |
depth2, intrinsics2, pose2, bbox2 | |
) | |
except EmptyTensorError: | |
continue | |
fmap_pos1 = fmap_pos1[:, ids] | |
descriptors1 = descriptors1[:, ids] | |
scores1 = scores1[ids] | |
# Skip the pair if not enough GT correspondences are available | |
if ids.size(0) < 128: | |
continue | |
# Descriptors at the corresponding positions | |
fmap_pos2 = torch.round( | |
downscale_positions(pos2, scaling_steps=scaling_steps) | |
).long() | |
descriptors2 = F.normalize( | |
dense_features2[:, fmap_pos2[0, :], fmap_pos2[1, :]], | |
dim=0 | |
) | |
positive_distance = 2 - 2 * ( | |
descriptors1.t().unsqueeze(1) @ descriptors2.t().unsqueeze(2) | |
).squeeze() | |
all_fmap_pos2 = grid_positions(h2, w2, device) | |
position_distance = torch.max( | |
torch.abs( | |
fmap_pos2.unsqueeze(2).float() - | |
all_fmap_pos2.unsqueeze(1) | |
), | |
dim=0 | |
)[0] | |
is_out_of_safe_radius = position_distance > safe_radius | |
distance_matrix = 2 - 2 * (descriptors1.t() @ all_descriptors2) | |
negative_distance2 = torch.min( | |
distance_matrix + (1 - is_out_of_safe_radius.float()) * 10., | |
dim=1 | |
)[0] | |
all_fmap_pos1 = grid_positions(h1, w1, device) | |
position_distance = torch.max( | |
torch.abs( | |
fmap_pos1.unsqueeze(2).float() - | |
all_fmap_pos1.unsqueeze(1) | |
), | |
dim=0 | |
)[0] | |
is_out_of_safe_radius = position_distance > safe_radius | |
distance_matrix = 2 - 2 * (descriptors2.t() @ all_descriptors1) | |
negative_distance1 = torch.min( | |
distance_matrix + (1 - is_out_of_safe_radius.float()) * 10., | |
dim=1 | |
)[0] | |
diff = positive_distance - torch.min( | |
negative_distance1, negative_distance2 | |
) | |
scores2 = scores2[fmap_pos2[0, :], fmap_pos2[1, :]] | |
loss = loss + ( | |
torch.sum(scores1 * scores2 * F.relu(margin + diff)) / | |
torch.sum(scores1 * scores2) | |
) | |
has_grad = True | |
n_valid_samples += 1 | |
# print(plot, batch['batch_idx'],batch['log_interval']) | |
if plot and batch['batch_idx'] % batch['log_interval'] == 0: | |
# print("should plot") | |
pos1_aux = pos1.cpu().numpy() | |
pos2_aux = pos2.cpu().numpy() | |
k = pos1_aux.shape[1] | |
col = np.random.rand(k, 3) | |
n_sp = 4 | |
plt.figure() | |
plt.subplot(1, n_sp, 1) | |
im1 = imshow_image( | |
batch['image1'][idx_in_batch].cpu().numpy(), | |
preprocessing=batch['preprocessing'] | |
) | |
plt.imshow(im1) | |
plt.scatter( | |
pos1_aux[1, :], pos1_aux[0, :], | |
s=0.25**2, c=col, marker=',', alpha=0.5 | |
) | |
plt.axis('off') | |
plt.subplot(1, n_sp, 2) | |
plt.imshow( | |
output['scores1'][idx_in_batch].data.cpu().numpy(), | |
cmap='Reds' | |
) | |
plt.axis('off') | |
plt.subplot(1, n_sp, 3) | |
im2 = imshow_image( | |
batch['image2'][idx_in_batch].cpu().numpy(), | |
preprocessing=batch['preprocessing'] | |
) | |
plt.imshow(im2) | |
plt.scatter( | |
pos2_aux[1, :], pos2_aux[0, :], | |
s=0.25**2, c=col, marker=',', alpha=0.5 | |
) | |
plt.axis('off') | |
plt.subplot(1, n_sp, 4) | |
plt.imshow( | |
output['scores2'][idx_in_batch].data.cpu().numpy(), | |
cmap='Reds' | |
) | |
plt.axis('off') | |
savefig(os.path.join(plot_path, '%s.%02d.%02d.%d.png' % ( | |
'train' if batch['train'] else 'valid', | |
batch['epoch_idx'], | |
batch['batch_idx'] // batch['log_interval'], | |
idx_in_batch | |
)), dpi=300) | |
plt.close() | |
if not has_grad: | |
raise NoGradientError | |
loss = loss / n_valid_samples | |
return loss | |
def interpolate_depth(pos, depth): | |
device = pos.device | |
ids = torch.arange(0, pos.size(1), device=device) | |
h, w = depth.size() | |
i = pos[0, :] | |
j = pos[1, :] | |
# Valid corners | |
i_top_left = torch.floor(i).long() | |
j_top_left = torch.floor(j).long() | |
valid_top_left = torch.min(i_top_left >= 0, j_top_left >= 0) | |
i_top_right = torch.floor(i).long() | |
j_top_right = torch.ceil(j).long() | |
valid_top_right = torch.min(i_top_right >= 0, j_top_right < w) | |
i_bottom_left = torch.ceil(i).long() | |
j_bottom_left = torch.floor(j).long() | |
valid_bottom_left = torch.min(i_bottom_left < h, j_bottom_left >= 0) | |
i_bottom_right = torch.ceil(i).long() | |
j_bottom_right = torch.ceil(j).long() | |
valid_bottom_right = torch.min(i_bottom_right < h, j_bottom_right < w) | |
valid_corners = torch.min( | |
torch.min(valid_top_left, valid_top_right), | |
torch.min(valid_bottom_left, valid_bottom_right) | |
) | |
i_top_left = i_top_left[valid_corners] | |
j_top_left = j_top_left[valid_corners] | |
i_top_right = i_top_right[valid_corners] | |
j_top_right = j_top_right[valid_corners] | |
i_bottom_left = i_bottom_left[valid_corners] | |
j_bottom_left = j_bottom_left[valid_corners] | |
i_bottom_right = i_bottom_right[valid_corners] | |
j_bottom_right = j_bottom_right[valid_corners] | |
ids = ids[valid_corners] | |
if ids.size(0) == 0: | |
raise EmptyTensorError | |
# Valid depth | |
valid_depth = torch.min( | |
torch.min( | |
depth[i_top_left, j_top_left] > 0, | |
depth[i_top_right, j_top_right] > 0 | |
), | |
torch.min( | |
depth[i_bottom_left, j_bottom_left] > 0, | |
depth[i_bottom_right, j_bottom_right] > 0 | |
) | |
) | |
i_top_left = i_top_left[valid_depth] | |
j_top_left = j_top_left[valid_depth] | |
i_top_right = i_top_right[valid_depth] | |
j_top_right = j_top_right[valid_depth] | |
i_bottom_left = i_bottom_left[valid_depth] | |
j_bottom_left = j_bottom_left[valid_depth] | |
i_bottom_right = i_bottom_right[valid_depth] | |
j_bottom_right = j_bottom_right[valid_depth] | |
ids = ids[valid_depth] | |
if ids.size(0) == 0: | |
raise EmptyTensorError | |
# Interpolation | |
i = i[ids] | |
j = j[ids] | |
dist_i_top_left = i - i_top_left.float() | |
dist_j_top_left = j - j_top_left.float() | |
w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left) | |
w_top_right = (1 - dist_i_top_left) * dist_j_top_left | |
w_bottom_left = dist_i_top_left * (1 - dist_j_top_left) | |
w_bottom_right = dist_i_top_left * dist_j_top_left | |
interpolated_depth = ( | |
w_top_left * depth[i_top_left, j_top_left] + | |
w_top_right * depth[i_top_right, j_top_right] + | |
w_bottom_left * depth[i_bottom_left, j_bottom_left] + | |
w_bottom_right * depth[i_bottom_right, j_bottom_right] | |
) | |
pos = torch.cat([i.view(1, -1), j.view(1, -1)], dim=0) | |
return [interpolated_depth, pos, ids] | |
def uv_to_pos(uv): | |
return torch.cat([uv[1, :].view(1, -1), uv[0, :].view(1, -1)], dim=0) | |
def warp( | |
pos1, | |
depth1, intrinsics1, pose1, bbox1, | |
depth2, intrinsics2, pose2, bbox2 | |
): | |
device = pos1.device | |
Z1, pos1, ids = interpolate_depth(pos1, depth1) | |
# COLMAP convention | |
u1 = pos1[1, :] + bbox1[1] + .5 | |
v1 = pos1[0, :] + bbox1[0] + .5 | |
X1 = (u1 - intrinsics1[0, 2]) * (Z1 / intrinsics1[0, 0]) | |
Y1 = (v1 - intrinsics1[1, 2]) * (Z1 / intrinsics1[1, 1]) | |
XYZ1_hom = torch.cat([ | |
X1.view(1, -1), | |
Y1.view(1, -1), | |
Z1.view(1, -1), | |
torch.ones(1, Z1.size(0), device=device) | |
], dim=0) | |
XYZ2_hom = torch.chain_matmul(pose2, torch.inverse(pose1), XYZ1_hom) | |
XYZ2 = XYZ2_hom[: -1, :] / XYZ2_hom[-1, :].view(1, -1) | |
uv2_hom = torch.matmul(intrinsics2, XYZ2) | |
uv2 = uv2_hom[: -1, :] / uv2_hom[-1, :].view(1, -1) | |
u2 = uv2[0, :] - bbox2[1] - .5 | |
v2 = uv2[1, :] - bbox2[0] - .5 | |
uv2 = torch.cat([u2.view(1, -1), v2.view(1, -1)], dim=0) | |
annotated_depth, pos2, new_ids = interpolate_depth(uv_to_pos(uv2), depth2) | |
ids = ids[new_ids] | |
pos1 = pos1[:, new_ids] | |
estimated_depth = XYZ2[2, new_ids] | |
inlier_mask = torch.abs(estimated_depth - annotated_depth) < 0.05 | |
ids = ids[inlier_mask] | |
if ids.size(0) == 0: | |
raise EmptyTensorError | |
pos2 = pos2[:, inlier_mask] | |
pos1 = pos1[:, inlier_mask] | |
return pos1, pos2, ids | |