Spaces:
Running
Running
from collections import defaultdict | |
import pprint | |
from loguru import logger | |
from pathlib import Path | |
import torch | |
import numpy as np | |
import pytorch_lightning as pl | |
from matplotlib import pyplot as plt | |
from src.models import TopicFM | |
from src.models.utils.supervision import ( | |
compute_supervision_coarse, | |
compute_supervision_fine, | |
) | |
from src.losses.loss import TopicFMLoss | |
from src.optimizers import build_optimizer, build_scheduler | |
from src.utils.metrics import ( | |
compute_symmetrical_epipolar_errors, | |
compute_pose_errors, | |
aggregate_metrics, | |
) | |
from src.utils.plotting import make_matching_figures | |
from src.utils.comm import gather, all_gather | |
from src.utils.misc import lower_config, flattenList | |
from src.utils.profiler import PassThroughProfiler | |
class PL_Trainer(pl.LightningModule): | |
def __init__(self, config, pretrained_ckpt=None, profiler=None, dump_dir=None): | |
""" | |
TODO: | |
- use the new version of PL logging API. | |
""" | |
super().__init__() | |
# Misc | |
self.config = config # full config | |
_config = lower_config(self.config) | |
self.model_cfg = lower_config(_config["model"]) | |
self.profiler = profiler or PassThroughProfiler() | |
self.n_vals_plot = max( | |
config.TRAINER.N_VAL_PAIRS_TO_PLOT // config.TRAINER.WORLD_SIZE, 1 | |
) | |
# Matcher: TopicFM | |
self.matcher = TopicFM(config=_config["model"]) | |
self.loss = TopicFMLoss(_config) | |
# Pretrained weights | |
if pretrained_ckpt: | |
state_dict = torch.load(pretrained_ckpt, map_location="cpu")["state_dict"] | |
self.matcher.load_state_dict(state_dict, strict=True) | |
logger.info(f"Load '{pretrained_ckpt}' as pretrained checkpoint") | |
# Testing | |
self.dump_dir = dump_dir | |
def configure_optimizers(self): | |
# FIXME: The scheduler did not work properly when `--resume_from_checkpoint` | |
optimizer = build_optimizer(self, self.config) | |
scheduler = build_scheduler(self.config, optimizer) | |
return [optimizer], [scheduler] | |
def optimizer_step( | |
self, | |
epoch, | |
batch_idx, | |
optimizer, | |
optimizer_idx, | |
optimizer_closure, | |
on_tpu, | |
using_native_amp, | |
using_lbfgs, | |
): | |
# learning rate warm up | |
warmup_step = self.config.TRAINER.WARMUP_STEP | |
if self.trainer.global_step < warmup_step: | |
if self.config.TRAINER.WARMUP_TYPE == "linear": | |
base_lr = self.config.TRAINER.WARMUP_RATIO * self.config.TRAINER.TRUE_LR | |
lr = base_lr + ( | |
self.trainer.global_step / self.config.TRAINER.WARMUP_STEP | |
) * abs(self.config.TRAINER.TRUE_LR - base_lr) | |
for pg in optimizer.param_groups: | |
pg["lr"] = lr | |
elif self.config.TRAINER.WARMUP_TYPE == "constant": | |
pass | |
else: | |
raise ValueError( | |
f"Unknown lr warm-up strategy: {self.config.TRAINER.WARMUP_TYPE}" | |
) | |
# update params | |
optimizer.step(closure=optimizer_closure) | |
optimizer.zero_grad() | |
def _trainval_inference(self, batch): | |
with self.profiler.profile("Compute coarse supervision"): | |
compute_supervision_coarse(batch, self.config) | |
with self.profiler.profile("TopicFM"): | |
self.matcher(batch) | |
with self.profiler.profile("Compute fine supervision"): | |
compute_supervision_fine(batch, self.config) | |
with self.profiler.profile("Compute losses"): | |
self.loss(batch) | |
def _compute_metrics(self, batch): | |
with self.profiler.profile("Copmute metrics"): | |
compute_symmetrical_epipolar_errors( | |
batch | |
) # compute epi_errs for each match | |
compute_pose_errors( | |
batch, self.config | |
) # compute R_errs, t_errs, pose_errs for each pair | |
rel_pair_names = list(zip(*batch["pair_names"])) | |
bs = batch["image0"].size(0) | |
metrics = { | |
# to filter duplicate pairs caused by DistributedSampler | |
"identifiers": ["#".join(rel_pair_names[b]) for b in range(bs)], | |
"epi_errs": [ | |
batch["epi_errs"][batch["m_bids"] == b].cpu().numpy() | |
for b in range(bs) | |
], | |
"R_errs": batch["R_errs"], | |
"t_errs": batch["t_errs"], | |
"inliers": batch["inliers"], | |
} | |
ret_dict = {"metrics": metrics} | |
return ret_dict, rel_pair_names | |
def training_step(self, batch, batch_idx): | |
self._trainval_inference(batch) | |
# logging | |
if ( | |
self.trainer.global_rank == 0 | |
and self.global_step % self.trainer.log_every_n_steps == 0 | |
): | |
# scalars | |
for k, v in batch["loss_scalars"].items(): | |
self.logger.experiment.add_scalar(f"train/{k}", v, self.global_step) | |
# figures | |
if self.config.TRAINER.ENABLE_PLOTTING: | |
compute_symmetrical_epipolar_errors( | |
batch | |
) # compute epi_errs for each match | |
figures = make_matching_figures( | |
batch, self.config, self.config.TRAINER.PLOT_MODE | |
) | |
for k, v in figures.items(): | |
self.logger.experiment.add_figure( | |
f"train_match/{k}", v, self.global_step | |
) | |
return {"loss": batch["loss"]} | |
def training_epoch_end(self, outputs): | |
avg_loss = torch.stack([x["loss"] for x in outputs]).mean() | |
if self.trainer.global_rank == 0: | |
self.logger.experiment.add_scalar( | |
"train/avg_loss_on_epoch", avg_loss, global_step=self.current_epoch | |
) | |
def validation_step(self, batch, batch_idx): | |
self._trainval_inference(batch) | |
ret_dict, _ = self._compute_metrics(batch) | |
val_plot_interval = max(self.trainer.num_val_batches[0] // self.n_vals_plot, 1) | |
figures = {self.config.TRAINER.PLOT_MODE: []} | |
if batch_idx % val_plot_interval == 0: | |
figures = make_matching_figures( | |
batch, self.config, mode=self.config.TRAINER.PLOT_MODE | |
) | |
return { | |
**ret_dict, | |
"loss_scalars": batch["loss_scalars"], | |
"figures": figures, | |
} | |
def validation_epoch_end(self, outputs): | |
# handle multiple validation sets | |
multi_outputs = ( | |
[outputs] if not isinstance(outputs[0], (list, tuple)) else outputs | |
) | |
multi_val_metrics = defaultdict(list) | |
for valset_idx, outputs in enumerate(multi_outputs): | |
# since pl performs sanity_check at the very begining of the training | |
cur_epoch = self.trainer.current_epoch | |
if ( | |
not self.trainer.resume_from_checkpoint | |
and self.trainer.running_sanity_check | |
): | |
cur_epoch = -1 | |
# 1. loss_scalars: dict of list, on cpu | |
_loss_scalars = [o["loss_scalars"] for o in outputs] | |
loss_scalars = { | |
k: flattenList(all_gather([_ls[k] for _ls in _loss_scalars])) | |
for k in _loss_scalars[0] | |
} | |
# 2. val metrics: dict of list, numpy | |
_metrics = [o["metrics"] for o in outputs] | |
metrics = { | |
k: flattenList(all_gather(flattenList([_me[k] for _me in _metrics]))) | |
for k in _metrics[0] | |
} | |
# NOTE: all ranks need to `aggregate_merics`, but only log at rank-0 | |
val_metrics_4tb = aggregate_metrics( | |
metrics, self.config.TRAINER.EPI_ERR_THR | |
) | |
for thr in [5, 10, 20]: | |
multi_val_metrics[f"auc@{thr}"].append(val_metrics_4tb[f"auc@{thr}"]) | |
# 3. figures | |
_figures = [o["figures"] for o in outputs] | |
figures = { | |
k: flattenList(gather(flattenList([_me[k] for _me in _figures]))) | |
for k in _figures[0] | |
} | |
# tensorboard records only on rank 0 | |
if self.trainer.global_rank == 0: | |
for k, v in loss_scalars.items(): | |
mean_v = torch.stack(v).mean() | |
self.logger.experiment.add_scalar( | |
f"val_{valset_idx}/avg_{k}", mean_v, global_step=cur_epoch | |
) | |
for k, v in val_metrics_4tb.items(): | |
self.logger.experiment.add_scalar( | |
f"metrics_{valset_idx}/{k}", v, global_step=cur_epoch | |
) | |
for k, v in figures.items(): | |
if self.trainer.global_rank == 0: | |
for plot_idx, fig in enumerate(v): | |
self.logger.experiment.add_figure( | |
f"val_match_{valset_idx}/{k}/pair-{plot_idx}", | |
fig, | |
cur_epoch, | |
close=True, | |
) | |
plt.close("all") | |
for thr in [5, 10, 20]: | |
# log on all ranks for ModelCheckpoint callback to work properly | |
self.log( | |
f"auc@{thr}", torch.tensor(np.mean(multi_val_metrics[f"auc@{thr}"])) | |
) # ckpt monitors on this | |
def test_step(self, batch, batch_idx): | |
with self.profiler.profile("TopicFM"): | |
self.matcher(batch) | |
ret_dict, rel_pair_names = self._compute_metrics(batch) | |
with self.profiler.profile("dump_results"): | |
if self.dump_dir is not None: | |
# dump results for further analysis | |
keys_to_save = {"mkpts0_f", "mkpts1_f", "mconf", "epi_errs"} | |
pair_names = list(zip(*batch["pair_names"])) | |
bs = batch["image0"].shape[0] | |
dumps = [] | |
for b_id in range(bs): | |
item = {} | |
mask = batch["m_bids"] == b_id | |
item["pair_names"] = pair_names[b_id] | |
item["identifier"] = "#".join(rel_pair_names[b_id]) | |
for key in keys_to_save: | |
item[key] = batch[key][mask].cpu().numpy() | |
for key in ["R_errs", "t_errs", "inliers"]: | |
item[key] = batch[key][b_id] | |
dumps.append(item) | |
ret_dict["dumps"] = dumps | |
return ret_dict | |
def test_epoch_end(self, outputs): | |
# metrics: dict of list, numpy | |
_metrics = [o["metrics"] for o in outputs] | |
metrics = { | |
k: flattenList(gather(flattenList([_me[k] for _me in _metrics]))) | |
for k in _metrics[0] | |
} | |
# [{key: [{...}, *#bs]}, *#batch] | |
if self.dump_dir is not None: | |
Path(self.dump_dir).mkdir(parents=True, exist_ok=True) | |
_dumps = flattenList([o["dumps"] for o in outputs]) # [{...}, #bs*#batch] | |
dumps = flattenList(gather(_dumps)) # [{...}, #proc*#bs*#batch] | |
logger.info( | |
f"Prediction and evaluation results will be saved to: {self.dump_dir}" | |
) | |
if self.trainer.global_rank == 0: | |
print(self.profiler.summary()) | |
val_metrics_4tb = aggregate_metrics( | |
metrics, self.config.TRAINER.EPI_ERR_THR | |
) | |
logger.info("\n" + pprint.pformat(val_metrics_4tb)) | |
if self.dump_dir is not None: | |
np.save(Path(self.dump_dir) / "TopicFM_pred_eval", dumps) | |