Realcat
add: GIM (https://github.com/xuelunshen/gim)
4d4dd90
raw
history blame
10.6 kB
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
# --------------------------------------------------------
# CroCo model during pretraining
# --------------------------------------------------------
import torch
import torch.nn as nn
torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
from functools import partial
from models.blocks import Block, DecoderBlock, PatchEmbed
from models.pos_embed import get_2d_sincos_pos_embed, RoPE2D
from models.masking import RandomMask
class CroCoNet(nn.Module):
def __init__(self,
img_size=224, # input image size
patch_size=16, # patch_size
mask_ratio=0.9, # ratios of masked tokens
enc_embed_dim=768, # encoder feature dimension
enc_depth=12, # encoder depth
enc_num_heads=12, # encoder number of heads in the transformer block
dec_embed_dim=512, # decoder feature dimension
dec_depth=8, # decoder depth
dec_num_heads=16, # decoder number of heads in the transformer block
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
norm_im2_in_dec=True, # whether to apply normalization of the 'memory' = (second image) in the decoder
pos_embed='cosine', # positional embedding (either cosine or RoPE100)
):
super(CroCoNet, self).__init__()
# patch embeddings (with initialization done as in MAE)
self._set_patch_embed(img_size, patch_size, enc_embed_dim)
# mask generations
self._set_mask_generator(self.patch_embed.num_patches, mask_ratio)
self.pos_embed = pos_embed
if pos_embed=='cosine':
# positional embedding of the encoder
enc_pos_embed = get_2d_sincos_pos_embed(enc_embed_dim, int(self.patch_embed.num_patches**.5), n_cls_token=0)
self.register_buffer('enc_pos_embed', torch.from_numpy(enc_pos_embed).float())
# positional embedding of the decoder
dec_pos_embed = get_2d_sincos_pos_embed(dec_embed_dim, int(self.patch_embed.num_patches**.5), n_cls_token=0)
self.register_buffer('dec_pos_embed', torch.from_numpy(dec_pos_embed).float())
# pos embedding in each block
self.rope = None # nothing for cosine
elif pos_embed.startswith('RoPE'): # eg RoPE100
self.enc_pos_embed = None # nothing to add in the encoder with RoPE
self.dec_pos_embed = None # nothing to add in the decoder with RoPE
if RoPE2D is None: raise ImportError("Cannot find cuRoPE2D, please install it following the README instructions")
freq = float(pos_embed[len('RoPE'):])
self.rope = RoPE2D(freq=freq)
else:
raise NotImplementedError('Unknown pos_embed '+pos_embed)
# transformer for the encoder
self.enc_depth = enc_depth
self.enc_embed_dim = enc_embed_dim
self.enc_blocks = nn.ModuleList([
Block(enc_embed_dim, enc_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, rope=self.rope)
for i in range(enc_depth)])
self.enc_norm = norm_layer(enc_embed_dim)
# masked tokens
self._set_mask_token(dec_embed_dim)
# decoder
self._set_decoder(enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec)
# prediction head
self._set_prediction_head(dec_embed_dim, patch_size)
# initializer weights
self.initialize_weights()
def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
self.patch_embed = PatchEmbed(img_size, patch_size, 3, enc_embed_dim)
def _set_mask_generator(self, num_patches, mask_ratio):
self.mask_generator = RandomMask(num_patches, mask_ratio)
def _set_mask_token(self, dec_embed_dim):
self.mask_token = nn.Parameter(torch.zeros(1, 1, dec_embed_dim))
def _set_decoder(self, enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec):
self.dec_depth = dec_depth
self.dec_embed_dim = dec_embed_dim
# transfer from encoder to decoder
self.decoder_embed = nn.Linear(enc_embed_dim, dec_embed_dim, bias=True)
# transformer for the decoder
self.dec_blocks = nn.ModuleList([
DecoderBlock(dec_embed_dim, dec_num_heads, mlp_ratio=mlp_ratio, qkv_bias=True, norm_layer=norm_layer, norm_mem=norm_im2_in_dec, rope=self.rope)
for i in range(dec_depth)])
# final norm layer
self.dec_norm = norm_layer(dec_embed_dim)
def _set_prediction_head(self, dec_embed_dim, patch_size):
self.prediction_head = nn.Linear(dec_embed_dim, patch_size**2 * 3, bias=True)
def initialize_weights(self):
# patch embed
self.patch_embed._init_weights()
# mask tokens
if self.mask_token is not None: torch.nn.init.normal_(self.mask_token, std=.02)
# linears and layer norms
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def _encode_image(self, image, do_mask=False, return_all_blocks=False):
"""
image has B x 3 x img_size x img_size
do_mask: whether to perform masking or not
return_all_blocks: if True, return the features at the end of every block
instead of just the features from the last block (eg for some prediction heads)
"""
# embed the image into patches (x has size B x Npatches x C)
# and get position if each return patch (pos has size B x Npatches x 2)
x, pos = self.patch_embed(image)
# add positional embedding without cls token
if self.enc_pos_embed is not None:
x = x + self.enc_pos_embed[None,...]
# apply masking
B,N,C = x.size()
if do_mask:
masks = self.mask_generator(x)
x = x[~masks].view(B, -1, C)
posvis = pos[~masks].view(B, -1, 2)
else:
B,N,C = x.size()
masks = torch.zeros((B,N), dtype=bool)
posvis = pos
# now apply the transformer encoder and normalization
if return_all_blocks:
out = []
for blk in self.enc_blocks:
x = blk(x, posvis)
out.append(x)
out[-1] = self.enc_norm(out[-1])
return out, pos, masks
else:
for blk in self.enc_blocks:
x = blk(x, posvis)
x = self.enc_norm(x)
return x, pos, masks
def _decoder(self, feat1, pos1, masks1, feat2, pos2, return_all_blocks=False):
"""
return_all_blocks: if True, return the features at the end of every block
instead of just the features from the last block (eg for some prediction heads)
masks1 can be None => assume image1 fully visible
"""
# encoder to decoder layer
visf1 = self.decoder_embed(feat1)
f2 = self.decoder_embed(feat2)
# append masked tokens to the sequence
B,Nenc,C = visf1.size()
if masks1 is None: # downstreams
f1_ = visf1
else: # pretraining
Ntotal = masks1.size(1)
f1_ = self.mask_token.repeat(B, Ntotal, 1).to(dtype=visf1.dtype)
f1_[~masks1] = visf1.view(B * Nenc, C)
# add positional embedding
if self.dec_pos_embed is not None:
f1_ = f1_ + self.dec_pos_embed
f2 = f2 + self.dec_pos_embed
# apply Transformer blocks
out = f1_
out2 = f2
if return_all_blocks:
_out, out = out, []
for blk in self.dec_blocks:
_out, out2 = blk(_out, out2, pos1, pos2)
out.append(_out)
out[-1] = self.dec_norm(out[-1])
else:
for blk in self.dec_blocks:
out, out2 = blk(out, out2, pos1, pos2)
out = self.dec_norm(out)
return out
def patchify(self, imgs):
"""
imgs: (B, 3, H, W)
x: (B, L, patch_size**2 *3)
"""
p = self.patch_embed.patch_size[0]
assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
h = w = imgs.shape[2] // p
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
x = torch.einsum('nchpwq->nhwpqc', x)
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
return x
def unpatchify(self, x, channels=3):
"""
x: (N, L, patch_size**2 *channels)
imgs: (N, 3, H, W)
"""
patch_size = self.patch_embed.patch_size[0]
h = w = int(x.shape[1]**.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, patch_size, patch_size, channels))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], channels, h * patch_size, h * patch_size))
return imgs
def forward(self, img1, img2):
"""
img1: tensor of size B x 3 x img_size x img_size
img2: tensor of size B x 3 x img_size x img_size
out will be B x N x (3*patch_size*patch_size)
masks are also returned as B x N just in case
"""
# encoder of the masked first image
feat1, pos1, mask1 = self._encode_image(img1, do_mask=True)
# encoder of the second image
feat2, pos2, _ = self._encode_image(img2, do_mask=False)
# decoder
decfeat = self._decoder(feat1, pos1, mask1, feat2, pos2)
# prediction head
out = self.prediction_head(decfeat)
# get target
target = self.patchify(img1)
return out, mask1, target