Realcat
add: GIM (https://github.com/xuelunshen/gim)
4d4dd90
raw
history blame
6.47 kB
from collections import defaultdict
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
from omegaconf import OmegaConf
from tqdm import tqdm
from ..datasets import get_dataset
from ..models.cache_loader import CacheLoader
from ..settings import EVAL_PATH
from ..utils.export_predictions import export_predictions
from .eval_pipeline import EvalPipeline, load_eval
from .io import get_eval_parser, load_model, parse_eval_args
from .utils import aggregate_pr_results, get_tp_fp_pts
def eval_dataset(loader, pred_file, suffix=""):
results = defaultdict(list)
results["num_pos" + suffix] = 0
cache_loader = CacheLoader({"path": str(pred_file), "collate": None}).eval()
for data in tqdm(loader):
pred = cache_loader(data)
if suffix == "":
scores = pred["matching_scores0"].numpy()
sort_indices = np.argsort(scores)[::-1]
gt_matches = pred["gt_matches0"].numpy()[sort_indices]
pred_matches = pred["matches0"].numpy()[sort_indices]
else:
scores = pred["line_matching_scores0"].numpy()
sort_indices = np.argsort(scores)[::-1]
gt_matches = pred["gt_line_matches0"].numpy()[sort_indices]
pred_matches = pred["line_matches0"].numpy()[sort_indices]
scores = scores[sort_indices]
tp, fp, scores, num_pos = get_tp_fp_pts(pred_matches, gt_matches, scores)
results["tp" + suffix].append(tp)
results["fp" + suffix].append(fp)
results["scores" + suffix].append(scores)
results["num_pos" + suffix] += num_pos
# Aggregate the results
return aggregate_pr_results(results, suffix=suffix)
class ETH3DPipeline(EvalPipeline):
default_conf = {
"data": {
"name": "eth3d",
"batch_size": 1,
"train_batch_size": 1,
"val_batch_size": 1,
"test_batch_size": 1,
"num_workers": 16,
},
"model": {
"name": "gluefactory.models.two_view_pipeline",
"ground_truth": {
"name": "gluefactory.models.matchers.depth_matcher",
"use_lines": False,
},
"run_gt_in_forward": True,
},
"eval": {"plot_methods": [], "plot_line_methods": [], "eval_lines": False},
}
export_keys = [
"gt_matches0",
"matches0",
"matching_scores0",
]
optional_export_keys = [
"gt_line_matches0",
"line_matches0",
"line_matching_scores0",
]
def get_dataloader(self, data_conf=None):
data_conf = data_conf if data_conf is not None else self.default_conf["data"]
dataset = get_dataset("eth3d")(data_conf)
return dataset.get_data_loader("test")
def get_predictions(self, experiment_dir, model=None, overwrite=False):
pred_file = experiment_dir / "predictions.h5"
if not pred_file.exists() or overwrite:
if model is None:
model = load_model(self.conf.model, self.conf.checkpoint)
export_predictions(
self.get_dataloader(self.conf.data),
model,
pred_file,
keys=self.export_keys,
optional_keys=self.optional_export_keys,
)
return pred_file
def run_eval(self, loader, pred_file):
eval_conf = self.conf.eval
r = eval_dataset(loader, pred_file)
if self.conf.eval.eval_lines:
r.update(eval_dataset(loader, pred_file, conf=eval_conf, suffix="_lines"))
s = {}
return s, {}, r
def plot_pr_curve(
models_name, results, dst_file="eth3d_pr_curve.pdf", title=None, suffix=""
):
plt.figure()
f_scores = np.linspace(0.2, 0.9, num=8)
for f_score in f_scores:
x = np.linspace(0.01, 1)
y = f_score * x / (2 * x - f_score)
plt.plot(x[y >= 0], y[y >= 0], color=[0, 0.5, 0], alpha=0.3)
plt.annotate(
"f={0:0.1}".format(f_score),
xy=(0.9, y[45] + 0.02),
alpha=0.4,
fontsize=14,
)
plt.rcParams.update({"font.size": 12})
# plt.rc('legend', fontsize=10)
plt.grid(True)
plt.axis([0.0, 1.0, 0.0, 1.0])
plt.xticks(np.arange(0, 1.05, step=0.1), fontsize=16)
plt.xlabel("Recall", fontsize=18)
plt.ylabel("Precision", fontsize=18)
plt.yticks(np.arange(0, 1.05, step=0.1), fontsize=16)
plt.ylim([0.3, 1.0])
prop_cycle = plt.rcParams["axes.prop_cycle"]
colors = prop_cycle.by_key()["color"]
for m, c in zip(models_name, colors):
sAP_string = f'{m}: {results[m]["AP" + suffix]:.1f}'
plt.plot(
results[m]["curve_recall" + suffix],
results[m]["curve_precision" + suffix],
label=sAP_string,
color=c,
)
plt.legend(fontsize=16, loc="lower right")
if title:
plt.title(title)
plt.tight_layout(pad=0.5)
print(f"Saving plot to: {dst_file}")
plt.savefig(dst_file)
plt.show()
if __name__ == "__main__":
dataset_name = Path(__file__).stem
parser = get_eval_parser()
args = parser.parse_intermixed_args()
default_conf = OmegaConf.create(ETH3DPipeline.default_conf)
# mingle paths
output_dir = Path(EVAL_PATH, dataset_name)
output_dir.mkdir(exist_ok=True, parents=True)
name, conf = parse_eval_args(
dataset_name,
args,
"configs/",
default_conf,
)
experiment_dir = output_dir / name
experiment_dir.mkdir(exist_ok=True)
pipeline = ETH3DPipeline(conf)
s, f, r = pipeline.run(
experiment_dir, overwrite=args.overwrite, overwrite_eval=args.overwrite_eval
)
# print results
for k, v in r.items():
if k.startswith("AP"):
print(f"{k}: {v:.2f}")
if args.plot:
results = {}
for m in conf.eval.plot_methods:
exp_dir = output_dir / m
results[m] = load_eval(exp_dir)[1]
plot_pr_curve(conf.eval.plot_methods, results, dst_file="eth3d_pr_curve.pdf")
if conf.eval.eval_lines:
for m in conf.eval.plot_line_methods:
exp_dir = output_dir / m
results[m] = load_eval(exp_dir)[1]
plot_pr_curve(
conf.eval.plot_line_methods,
results,
dst_file="eth3d_pr_curve_lines.pdf",
suffix="_lines",
)