import argparse import gradio as gr from common.utils import ( matcher_zoo, change_estimate_geom, run_matching, ransac_zoo, gen_examples, ) DESCRIPTION = """ # Image Matching WebUI This Space demonstrates [Image Matching WebUI](https://github.com/Vincentqyw/image-matching-webui) by vincent qin. Feel free to play with it, or duplicate to run image matching without a queue! 🔎 For more details about supported local features and matchers, please refer to https://github.com/Vincentqyw/image-matching-webui 🚀 All algorithms run on CPU for inference on HF, causing slow speeds and high latency. For faster inference, please download the [source code](https://github.com/Vincentqyw/image-matching-webui) for local deployment or check [openxlab space](https://github.com/Vincentqyw/image-matching-webui) and [direct URL](https://g-app-center-083997-7409-n9elr1.openxlab.space) 🐛 Your feedback is valuable to me. Please do not hesitate to report any bugs [here](https://github.com/Vincentqyw/image-matching-webui/issues). """ def ui_change_imagebox(choice): return {"value": None, "source": choice, "__type__": "update"} def ui_reset_state( image0, image1, match_threshold, extract_max_keypoints, keypoint_threshold, key, # enable_ransac=False, ransac_method="RANSAC", ransac_reproj_threshold=8, ransac_confidence=0.999, ransac_max_iter=10000, choice_estimate_geom="Homography", ): match_threshold = 0.2 extract_max_keypoints = 1000 keypoint_threshold = 0.015 key = list(matcher_zoo.keys())[0] image0 = None image1 = None # enable_ransac = False return ( image0, image1, match_threshold, extract_max_keypoints, keypoint_threshold, key, ui_change_imagebox("upload"), ui_change_imagebox("upload"), "upload", None, # keypoints None, # raw matches None, # ransac matches {}, {}, None, {}, # False, "RANSAC", 8, 0.999, 10000, "Homography", ) # "footer {visibility: hidden}" def run(config): with gr.Blocks(css="style.css") as app: gr.Markdown(DESCRIPTION) with gr.Row(equal_height=False): with gr.Column(): with gr.Row(): matcher_list = gr.Dropdown( choices=list(matcher_zoo.keys()), value="disk+lightglue", label="Matching Model", interactive=True, ) match_image_src = gr.Radio( ["upload", "webcam", "canvas"], label="Image Source", value="upload", ) with gr.Row(): input_image0 = gr.Image( label="Image 0", type="numpy", interactive=True, image_mode="RGB", ) input_image1 = gr.Image( label="Image 1", type="numpy", interactive=True, image_mode="RGB", ) with gr.Row(): button_reset = gr.Button(value="Reset") button_run = gr.Button( value="Run Match", variant="primary" ) with gr.Accordion("Advanced Setting", open=False): with gr.Accordion("Matching Setting", open=True): with gr.Row(): match_setting_threshold = gr.Slider( minimum=0.0, maximum=1, step=0.001, label="Match thres.", value=0.1, ) match_setting_max_features = gr.Slider( minimum=10, maximum=10000, step=10, label="Max features", value=1000, ) # TODO: add line settings with gr.Row(): detect_keypoints_threshold = gr.Slider( minimum=0, maximum=1, step=0.001, label="Keypoint thres.", value=0.015, ) detect_line_threshold = gr.Slider( minimum=0.1, maximum=1, step=0.01, label="Line thres.", value=0.2, ) # matcher_lists = gr.Radio( # ["NN-mutual", "Dual-Softmax"], # label="Matcher mode", # value="NN-mutual", # ) with gr.Accordion("RANSAC Setting", open=True): with gr.Row(equal_height=False): # enable_ransac = gr.Checkbox(label="Enable RANSAC") ransac_method = gr.Dropdown( choices=ransac_zoo.keys(), value="RANSAC", label="RANSAC Method", interactive=True, ) ransac_reproj_threshold = gr.Slider( minimum=0.0, maximum=12, step=0.01, label="Ransac Reproj threshold", value=8.0, ) ransac_confidence = gr.Slider( minimum=0.0, maximum=1, step=0.00001, label="Ransac Confidence", value=0.99999, ) ransac_max_iter = gr.Slider( minimum=0.0, maximum=100000, step=100, label="Ransac Iterations", value=10000, ) with gr.Accordion("Geometry Setting", open=False): with gr.Row(equal_height=False): # show_geom = gr.Checkbox(label="Show Geometry") choice_estimate_geom = gr.Radio( ["Fundamental", "Homography"], label="Reconstruct Geometry", value="Homography", ) # with gr.Column(): # collect inputs inputs = [ input_image0, input_image1, match_setting_threshold, match_setting_max_features, detect_keypoints_threshold, matcher_list, # enable_ransac, ransac_method, ransac_reproj_threshold, ransac_confidence, ransac_max_iter, choice_estimate_geom, ] # Add some examples with gr.Row(): # Example inputs gr.Examples( examples=gen_examples(), inputs=inputs, outputs=[], fn=run_matching, cache_examples=False, label=( "Examples (click one of the images below to Run" " Match)" ), ) with gr.Accordion("Open for More!", open=False): gr.Markdown( f"""